OIL-X EVOLUTION
High Efficiency Compressed Air & Gas Filters

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding
OIL-X EVOLUTION is a range of high efficiency compressed air filters consisting of coalescing filter grades for the removal of water and oil aerosols, solid particulates & micro-organisms, dust filter grades for the removal of dry particulate and micro-organisms and adsorption filters for the removal of oil vapor and odors.

Compressed air purification equipment must deliver uncompromising performance and reliability while providing the right balance of air quality with the lowest cost of operation. Many manufacturers offer products for the filtration and purification of contaminated compressed air, which are often selected only upon their initial purchase cost, with little or no regard for the air quality they provide, the cost of operation throughout their life or indeed their environmental impact. When purchasing purification equipment, delivered air quality, the overall cost of ownership and the equipment’s environmental impact must always be considered.

Benefits:

- Delivered Air quality in accordance with ISO 8573-1:2001, the international standard for compressed air quality.
- Filtration performance independently verified by Lloyds Register.
- Coalescing filters performance tested to the stringent requirements of ISO 12500-1.
- Dust removal and adsorption filters tested in accordance with the test methods of the ISO 8573 series.
- Suitable for all compressed air applications and all compressor types.
- Pressure losses start low and stay low to save energy, money and the environment.
- Low lifetime costs.
- Coalescing and dust removal filters are covered by one year compressed air quality guarantee which is automatically renewed with annual maintenance.
- All OIL-X EVOLUTION filter housings are covered by a 10 year housing guarantee.
- Helps reduce the release of CO₂ into the environment.
Air quality

The Parker domnick hunter OIL-X EVOLUTION range of die-cast compressed air filters have been designed from the outset to meet the air quality requirements of ISO 8573-1:2001, when validated in accordance with the requirements of ISO 12500-1.

Correct selection of filtration media

Coalescing and dust removal filters use a high efficiency borosilicate glass nanofiber material which has a 96% voids volume, providing media with excellent filtration efficiency and a high dirt holding capacity.

Construction of the filtration media into a filter element

OIL-X EVOLUTION filter media is constructed into a filter element using a unique deep bed pleating technique in place of the more conventional wrapped construction. This provides 450% more filtration surface area when compared to a traditional wrapped filter element and around 200% more surface area compared to a traditional pleated element.

Deep bed pleating also reduces the air flow velocity within the media, which further improves filtration performance.

Additionally, the high efficiency AA and AAR grade elements have a unique graded density media construction which provides even greater filtration performance without adding to pressure loss or energy consumption.

OIL-X EVOLUTION coalescing filters utilize four drainage methods to ensure high performance liquid removal, while conventional filters use only one.

Drainage method 1

High efficiency drainage layer provides increased liquid drainage, improved chemical compatibility and higher operational temperatures when compared to ordinary materials.

Drainage method 2

Typical filter elements have a build up of liquid known as a “wet band” where the drainage layer is glued into the lower endcap. The OIL-X EVOLUTION design wraps the drainage layer under the lower endcap to remove coalesced liquid from the air flow path, increasing liquid removal efficiency, and providing more usable filtration surface area.

Drainage method 3

Surface tension breakers on the lower filter element endcap provide fast and efficient drainage of coalesced liquid.

Drainage method 4

Drainage ribs cast into the filter bowl compress the lower part of the filter element, allowing bulk liquid to rapidly drain from the filter element through capillary action.
Energy efficiency

Any restriction to airflow within a filter housing and element will reduce the system pressure. To generate compressed air, large amounts of electrical energy are consumed, therefore any pressure lost within the system can be directly converted into a cost for wasted energy. The higher the pressure loss, the higher the energy costs.

Providing an optimal flow path for the compressed air through the filter housing and element is key to reducing system operating costs

Pressure loss in a compressed air filter is a combination of fixed pressure losses and incremental pressure losses.

Fixed pressure losses are derived from the filter housing and the interface between the filter housing and filter element.

Incremental pressure losses are directly related to the filter element as it blocks up with contamination.

In most filters, high operational costs can be attributed to a poorly designed airflow path within the filter housing element and poorly selected filtration media.

In addition to this, the high differential pressure “change points” recommended by many filter manufacturers increase operational costs even further.

Deep bed pleating

Deep bed pleating reduces the air flow velocity within the filtration media. This both improves filtration performance of the filter element and also reduces pressure losses.

Specialist media treatment

All OIL-X EVOLUTION coalescing and dust removal filter media includes a specialist treatment. This actively repels oil and water to ensure that coalesced liquid does not reduce the voids volume. Maintaining a high voids volume reduces the risk of premature blockage, system pressure losses and high energy consumption.
Advanced filter housings

OIL-X EVOLUTION die-cast and carbon steel fabricated filter housings provide simple installation, and long housing life with reduced maintenance. The unique design of the OIL-X EVOLUTION die-cast filter also provides more port sizes to give greater application flexibility. A ‘clean change’ element design ensures that service technicians do not have to directly handle contaminated filter elements during maintenance.

Filter connections
More port sizes are available to match both pipe size and system flow rate giving additional customer choice and reduced installation costs. Standard range suitable for pressures up to 232 psi g (16 bar g).

Compact and lightweight
Advanced element design provides a smaller, more compact filter.

Full corrosion protection
OIL-X EVOLUTION filter housings undergo cleaning, de-greasing and Alocrom treatment before painting. This not only primes the aluminum surface for painting, but also provides corrosion protection. All OIL-X EVOLUTION filter housings are protected with a tough, durable dry powder epoxy coating.

‘Clean change’ filter element
Filter element changes are now easy and do not require the user to directly handle the contaminated element during annual maintenance.

Minimal service clearance
Space saving design minimizes service clearance and allows installation in confined spaces.

NT Easy fit element technology for carbon steel fabricated filters
- Low pressure drop when compared to traditional wrapped filter elements.
- Drainage layer is suitable for use up to 212°F (100°C) and is compatible with all compressor oils.
- No tie-rod to reduce pressure drop and simplify installation.
Technical specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Drain Option</th>
<th>Maximum Operating Pressure</th>
<th>Maximum Recommended Operating Temperature</th>
<th>Minimum Recommended Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO/AA 010 - 060</td>
<td>Float</td>
<td>232 psi</td>
<td>(16 bar g)</td>
<td>212°F</td>
</tr>
<tr>
<td>AO/AA/AR/AAR 010 - 060</td>
<td>Manual</td>
<td>290 psi</td>
<td>(20 bar g)</td>
<td>212°F</td>
</tr>
<tr>
<td>ACS 010 - 060</td>
<td>Manual</td>
<td>290 psi</td>
<td>(20 bar g)</td>
<td>86°F</td>
</tr>
<tr>
<td>AC</td>
<td>Automatic</td>
<td>232 psi</td>
<td>(16 bar g)</td>
<td>86°F</td>
</tr>
<tr>
<td>AO/AA/AR/AAR/ACS 100M - 500S</td>
<td>Manual & Float</td>
<td>232 psi</td>
<td>(16 bar g)</td>
<td>212°F</td>
</tr>
</tbody>
</table>

Weights and dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
<th>A</th>
<th>ins</th>
<th>mm</th>
<th>ins</th>
<th>mm</th>
<th>ins</th>
<th>mm</th>
<th>ins</th>
<th>mm</th>
<th>lbs</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>010A</td>
<td>1/4” NPT</td>
<td></td>
<td>3.0</td>
<td>76</td>
<td>7.2</td>
<td>181.5</td>
<td></td>
<td>6.0</td>
<td>153.2</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
</tr>
<tr>
<td>010B</td>
<td>1/4” NPT</td>
<td></td>
<td>3.0</td>
<td>76</td>
<td>7.2</td>
<td>181.5</td>
<td></td>
<td>6.0</td>
<td>153.2</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
</tr>
<tr>
<td>010C</td>
<td>1/8” NPT</td>
<td></td>
<td>3.0</td>
<td>76</td>
<td>7.2</td>
<td>181.5</td>
<td></td>
<td>6.0</td>
<td>153.2</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
</tr>
<tr>
<td>015B</td>
<td>1/8” NPT</td>
<td></td>
<td>3.8</td>
<td>97.5</td>
<td>9.3</td>
<td>235</td>
<td>7.9</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>015C</td>
<td>1/8” NPT</td>
<td></td>
<td>3.8</td>
<td>97.5</td>
<td>9.3</td>
<td>235</td>
<td>7.9</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>020C</td>
<td>1/8” NPT</td>
<td></td>
<td>3.8</td>
<td>97.5</td>
<td>9.3</td>
<td>235</td>
<td>7.9</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>020D</td>
<td>1/8” NPT</td>
<td></td>
<td>3.8</td>
<td>97.5</td>
<td>9.3</td>
<td>235</td>
<td>7.9</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>020E</td>
<td>1/8” NPT</td>
<td></td>
<td>3.8</td>
<td>97.5</td>
<td>9.3</td>
<td>235</td>
<td>7.9</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>025D</td>
<td>1/8” NPT</td>
<td></td>
<td>5.1</td>
<td>129</td>
<td>10.8</td>
<td>274.8</td>
<td>9.2</td>
<td>232.5</td>
<td>-</td>
<td>-</td>
<td>4.84</td>
<td>2.2</td>
</tr>
<tr>
<td>025E</td>
<td>1/8” NPT</td>
<td></td>
<td>5.1</td>
<td>129</td>
<td>10.8</td>
<td>274.8</td>
<td>9.2</td>
<td>232.5</td>
<td>-</td>
<td>-</td>
<td>4.84</td>
<td>2.2</td>
</tr>
<tr>
<td>030E</td>
<td>1/8” NPT</td>
<td></td>
<td>5.1</td>
<td>129</td>
<td>14.3</td>
<td>364.3</td>
<td>12.7</td>
<td>322</td>
<td>-</td>
<td>-</td>
<td>5.72</td>
<td>2.6</td>
</tr>
<tr>
<td>030F</td>
<td>1/8” NPT</td>
<td></td>
<td>5.1</td>
<td>129</td>
<td>14.3</td>
<td>364.3</td>
<td>12.7</td>
<td>322</td>
<td>-</td>
<td>-</td>
<td>5.72</td>
<td>2.6</td>
</tr>
<tr>
<td>030G</td>
<td>1/8” NPT</td>
<td></td>
<td>5.1</td>
<td>129</td>
<td>14.3</td>
<td>364.3</td>
<td>12.7</td>
<td>322</td>
<td>-</td>
<td>-</td>
<td>5.72</td>
<td>2.6</td>
</tr>
<tr>
<td>035F</td>
<td>1/8” NPT</td>
<td></td>
<td>6.7</td>
<td>170</td>
<td>17.0</td>
<td>432.5</td>
<td>15.1</td>
<td>382.5</td>
<td>-</td>
<td>-</td>
<td>9.9</td>
<td>4.5</td>
</tr>
<tr>
<td>035G</td>
<td>1/8” NPT</td>
<td></td>
<td>6.7</td>
<td>170</td>
<td>17.0</td>
<td>432.5</td>
<td>15.1</td>
<td>382.5</td>
<td>-</td>
<td>-</td>
<td>9.9</td>
<td>4.5</td>
</tr>
<tr>
<td>040G</td>
<td>1/4” NPT</td>
<td></td>
<td>6.7</td>
<td>170</td>
<td>20.6</td>
<td>524.5</td>
<td>18.7</td>
<td>474.5</td>
<td>-</td>
<td>-</td>
<td>11.55</td>
<td>5.25</td>
</tr>
<tr>
<td>040H</td>
<td>1/4” NPT</td>
<td></td>
<td>6.7</td>
<td>170</td>
<td>20.6</td>
<td>524.5</td>
<td>18.7</td>
<td>474.5</td>
<td>-</td>
<td>-</td>
<td>11.55</td>
<td>5.25</td>
</tr>
<tr>
<td>045H</td>
<td>1/4” NPT</td>
<td></td>
<td>6.7</td>
<td>170</td>
<td>20.6</td>
<td>524.5</td>
<td>18.7</td>
<td>474.5</td>
<td>-</td>
<td>-</td>
<td>11.55</td>
<td>5.25</td>
</tr>
<tr>
<td>050I</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>25.3</td>
<td>641.6</td>
<td>22.9</td>
<td>581.6</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>050J</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>25.3</td>
<td>641.6</td>
<td>22.9</td>
<td>581.6</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>055I</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
<tr>
<td>055J</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
<tr>
<td>060K</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
<tr>
<td>060K</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
<tr>
<td>060K</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
<tr>
<td>060K</td>
<td>1/2” NPT</td>
<td></td>
<td>8.1</td>
<td>204.8</td>
<td>32.8</td>
<td>832.1</td>
<td>30.4</td>
<td>772.1</td>
<td>-</td>
<td>-</td>
<td>26.4</td>
<td>12</td>
</tr>
</tbody>
</table>

*Dimensions for in-line filters only. Consult factory for floor mounted filter dimensions.
Product selection

Stated flows are at 100 psi g (7 bar g) ANR conditions. For flows at other pressures apply the correction factors shown.

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>scfm</th>
<th>Nm³/hr</th>
<th>L/s</th>
<th>Replacement Element Kit</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" NPT</td>
<td>275</td>
<td>430</td>
<td>150 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2" NPT</td>
<td>64</td>
<td>108</td>
<td>30 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4" NPT</td>
<td>21</td>
<td>36</td>
<td>10 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" NPT</td>
<td>64</td>
<td>108</td>
<td>30 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/2" NPT</td>
<td>127</td>
<td>216</td>
<td>60 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" NPT</td>
<td>127</td>
<td>216</td>
<td>60 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" NPT</td>
<td>1344</td>
<td>2232</td>
<td>620 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" NPT</td>
<td>699</td>
<td>1188</td>
<td>330 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5" NPT</td>
<td>911</td>
<td>1548</td>
<td>430 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6" NPT</td>
<td>1187</td>
<td>1980</td>
<td>600 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8" NPT</td>
<td>1589</td>
<td>2640</td>
<td>800 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10" NPT</td>
<td>1991</td>
<td>3300</td>
<td>1000 (grade) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12" NPT</td>
<td>2401</td>
<td>4000</td>
<td>1200 (grade) 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Operating Pressure

87 6 0.93
73 5 0.85
58 4 0.76
44 3 0.65
29 2 0.53
15 1 0.38

Correction Factor

To find the Correction factor for 122 psi g (8.5 bar g) =

\[
\sqrt{\frac{122}{8.5}} = 1.10
\]

Ordering Example: To order a grade AO filter, model 040 with 2" connection, NPT threaded, float drain with incident monitor, your nomenclature would be AO040HNI.

1. Incident monitor is not available on model 010.
2. AC/AAR/AC must be ordered with manual drain.
3. AA/AO available only with manual drain for pressures above 232 psi g.

Filter coding

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MODEL</th>
<th>PIPE SIZE</th>
<th>CONNECTION TYPE</th>
<th>DRAIN OPTION</th>
<th>INCIDENT MONITOR OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td></td>
<td>3 digit</td>
<td>N = NPT</td>
<td>F = Float</td>
<td>X = None</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>code</td>
<td>B = BSPT</td>
<td>M = Manual</td>
<td>I = Incident Monitor</td>
</tr>
<tr>
<td>AR</td>
<td></td>
<td>shown</td>
<td>D = Flange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAR</td>
<td></td>
<td>above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OIL-X EVOLUTION Grade AC Combination Filters

<table>
<thead>
<tr>
<th>Model</th>
<th>Pipe Size</th>
<th>scfm</th>
<th>Nm³/hr</th>
<th>L/s</th>
<th>Replacement Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC010ANQI</td>
<td>1/2" NPT</td>
<td>13</td>
<td>22</td>
<td>6</td>
<td>010AA & 010AC</td>
</tr>
<tr>
<td>AC010BNQI</td>
<td>1/2" NPT</td>
<td>13</td>
<td>22</td>
<td>6</td>
<td>010AA & 010AC</td>
</tr>
<tr>
<td>AC010CNQI</td>
<td>1/2" NPT</td>
<td>13</td>
<td>22</td>
<td>6</td>
<td>010AA & 010AC</td>
</tr>
<tr>
<td>AC015BNQI</td>
<td>1/2" NPT</td>
<td>27</td>
<td>46</td>
<td>13</td>
<td>015AA & 015AC</td>
</tr>
<tr>
<td>AC015CNQI</td>
<td>1/2" NPT</td>
<td>27</td>
<td>46</td>
<td>13</td>
<td>015AA & 015AC</td>
</tr>
<tr>
<td>AC020BNQI</td>
<td>1/2" NPT</td>
<td>53</td>
<td>90</td>
<td>25</td>
<td>020AA & 020AC</td>
</tr>
<tr>
<td>AC020CNQI</td>
<td>1/2" NPT</td>
<td>53</td>
<td>90</td>
<td>25</td>
<td>020AA & 020AC</td>
</tr>
<tr>
<td>AC025BNQI</td>
<td>1" NPT</td>
<td>53</td>
<td>90</td>
<td>25</td>
<td>020AA & 020AC</td>
</tr>
<tr>
<td>AC025CNQI</td>
<td>1" NPT</td>
<td>53</td>
<td>90</td>
<td>25</td>
<td>020AA & 020AC</td>
</tr>
<tr>
<td>AC030BNQI</td>
<td>1" NPT</td>
<td>136</td>
<td>231</td>
<td>65</td>
<td>025AA & 025AC</td>
</tr>
<tr>
<td>AC030CNQI</td>
<td>1" NPT</td>
<td>136</td>
<td>231</td>
<td>65</td>
<td>025AA & 025AC</td>
</tr>
<tr>
<td>AC035BNQI</td>
<td>1 1/2" NPT</td>
<td>180</td>
<td>305</td>
<td>85</td>
<td>030AA & 030AC</td>
</tr>
<tr>
<td>AC035CNQI</td>
<td>1 1/2" NPT</td>
<td>180</td>
<td>305</td>
<td>85</td>
<td>030AA & 030AC</td>
</tr>
</tbody>
</table>

* Grade AA and AC elements required for double stage filter. **AC combination filter includes automatic float drain.
Worldwide Manufacturing Locations

North America

Parker Hannifin Corporation
Filtration Group
Global Headquarters
6035 Parkland Boulevard
Cleveland, OH 44124-4141
T 216 896 3000, F 216 896 4021
www.parker.com/balcony

Compressed Air Treatment
Filtration & Separation/Balston
242 Neck Road
Haverhill, MA 01835-0723
T 978 858 0505, F 978 858 0625
www.parker.com/balcony

Process Filtration
Filtration & Separation/Finite
500 Glaspie Street, PO. Box 599
Modesto, CA 95353
T 209 521 7860, F 209 529 3278
www.parker.com/balcony

Engine Filtration & Water Purification
Racor
3400 Finch Road, PO Box 3208
Modesto, CA 95353
T 209 521 7860, F 209 529 3278
www.parker.com/racor

Racor
850 North West St., PO Box 6030 Holly Springs, MS 38635
T 662 252 2656, F 662 274 2118
www.parker.com/racor

Racor Research & Development
Parker Hannifin GmbH & Co KG
Inselstrasse 3 – 5
70327 Stuttgart Germany
T +49 (0)711 7071 290-70
www.parker.com/rfde

Hydraulic Filtration
Hydraulic Filter
Stieltjesweg 8, 6827 BV
P.O. Box 5008 6802 EA
Arnhem, Holland
T +31 26 3670367, F +31 26 3643620
www.parker.com/eurofiltr

Urala Operation, Finn Filter
Saaminesi 260
31700 Urjala as Finland
T +358 20 753 2500, F +358 20 753 2501
www.parker.com/fi

Condition Monitoring Center
Brunel Way Thetford,
Norfolk IP 24 1HP England
T +44 1842 763299, F +44 1842 756300
www.parker.com/cmc

Process Filtration
domnick hunter Process
Durham Road, Birtley Co. Durham, DH3 2SF England
T +44 (0) 191 410 5121, F +44 (0) 191 410 5312
www.domnickhunter.com

Asia Pacific

Australia
9 Carrington Road, Castle Hill
NSW 2154, Australia
T +61 2 9634 777, F +61 2 9899 6184
www.parker.com/australia

China
280 YunQiao Road
JinQiao Export Processing Zone
Shanghai 101206 China
T +86 21 5301 2525, F +86 21 5834 3714
www.parker.com/china

India
Plot EL 26, MIDC, TTC Industrial Area
Mahape, Navi Mumbai 400 709 India
T +91 22 5613 7081, 82, 83, 84, 85
F +91 22 2766 6618 6841
www.parker.com/india

Japan
626, Totsuka-cho, Totsuka-ku
Yokohama-shi, 244-0003 Japan
T +81 45 870 1522, F +81 45 864 5305
www.parker.com/japan

Korea
1-C Block, Industrial Complex of Jangan,
615-1, Geumul-Ri Jangan-Myeon,
Hwaseong-City Gyeonggi-Do, Korea
T +82 31 359 0771, F +82 31 359 0770
www.parker.com/korea

Singapore
No. 11 4th Chin Bee Road
Jurong Town, Singapore 619702
T +65 6887 6330, F +65 6261 4929
www.parker.com/singapore

Thailand
1023 3rd Floor, TPS Building
Pattanakarn Road, Suanluang,
Bangkok 10250 Thailand
T +66 2717 8140, F +66 2717 8148
www.parker.com/thailand

Latin America

Parker Comercio Ltda.
Filtration Division
Estrada Municipal João de Paula
900 Eugênio de Melo,
Sao Jose dos Campos
CEP 12225390 SP Brazil
T +55 12 4009 3500, F +55 12 4009 3529
www.parker.com/br

Pan American Division - Miami
7400 NW 19th Street, Suite A
Miami, FL 33128
T 305 470 8800, F 305 470 8808
www.parker.com/panam

Africa
Parker Hannifin Africa Pty Ltd Parker
Place, 10 Berne Avenue,
Aeroport Kempton Park,
1620 South Africa
T +27 11 9610700, F +27 11 3927213
www.parker.com/europe

© 2009 Parker Hannifin Corporation
Catalog: Rev. 0017 400 4402
02/09 Rev. 000 USA 12/09