Assuring the performance of sterile gas filtration in dairy processes.
Assuring filter performance

The performance of sterile gas filter systems is critical to a plant’s Quality Assurance objective of protecting their product from contamination during production and packaging. The on-going performance of a plant’s sterilizing grade gas filters can be checked by routine integrity testing as part of their HACCP plan. Most integrity testing methods are time consuming and difficult to perform, thus conflicting with the demand for efficient operation for leading dairy processes.

The aerosol challenge test, performed by Parker domnick hunter’s Valairdata 3 provides a number of process advantages by being capable of testing both depth and membrane style sterile gas filters in-situ, quickly and easily.
The growth of aseptic filling within the dairy industry has seen a significant increase in recent years, driven by a demand for fresh, healthy, natural products which are low in fats, salts, sugars and preservatives. Unfortunately, reducing the level of these constituents provides the ideal environment for bacterial growth.

As a result, manufacturers employ microbial stabilization or sterilization techniques throughout their production processes to eliminate contamination and reduce the levels of microorganisms in their products for safe consumption.

In aseptic filling, the microbial content of the product is stabilized before it is packaged, typically using one or a combination of methods such as pasteurization and filtration. Stabilizing the product before packaging creates the need for a completely sterile environment when packaging, to prevent any other microorganisms from entering the product. A key consideration in doing this is the compressed air or other gases that come into direct contact with the product or packaging. The gas used to dispense the product into its container and the gas used to blow containers serve as the two key examples of where sterility is absolutely essential to maintain product quality. To achieve food grade compressed air sterility, a range of filtration and separation techniques are typically employed to remove each contaminant before final sterile filtration (see table 1 below).

Bacterial contamination presents a significant processing problem which, if not addressed appropriately, could result in product re-work, wastage or recall, all of which contribute to significant processing costs.

Contamination Reduction / Removal

<table>
<thead>
<tr>
<th>Purification Equipment Technologies</th>
<th>Bulk Condensed Water</th>
<th>Water Vapour</th>
<th>Water Aerosols</th>
<th>Atmospheric Dirt & Solid Particulate</th>
<th>Micro-organisms</th>
<th>Oil Vapour</th>
<th>Liquid Oil and Oil Aerosols</th>
<th>Rust and Pipescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Separators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coalescing Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adsorption Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adsorption Dryers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigeration Dryers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust Removal Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiological Filters*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To ensure the highest level of beverage safety and shelf life, Parker domnick hunter recommends that all contact and non-contact high risk is treated with a sterilizing grade filter to remove all microbial contamination.

Table 1. Summary of purification technologies applicable to eliminate the main contaminants of compressed air²
Applying the HACCP principle

7 principles of the HACCP framework

- Identification of potential hazards (e.g., pathogenic / spoilage microorganisms)
- Establish critical control points
- Establish critical limits
- Measures to control these hazards
- Monitoring the controls (e.g., integrity testing)
- Corrective action
- Documentation

HACCP

Hazard Analysis of Critical Control Points.

The sterile filtration of compressed gases is an essential consideration in the HACCP (Hazard Analysis of Critical Control Points) framework. HACCP is an internationally recognized approach for the systematic identification, control and on-going monitoring of potential hazards in a dairy production process, principally aimed at protecting consumer health.

Sterile filtration of gases which come into direct contact with the product or packaging are highlighted as Critical Control Points in the HACCP plan. As such, a monitoring programme is required to make sure the filter system is fit for purpose and is capable of delivering sterility throughout its entire service life.

Assurance of hazard elimination

Sterile gas filter integrity testing

The ability of sterile gas filter systems to provide sterility during use will have been validated by the filter manufacturer. Typically, this will have been done through extensive bacterial challenge testing, where the filter will have been exposed to high levels of bacterial cells per square centimeter (typically 10^7 cfu B. diminuta or B. subtilis per cm²). This validation is used to demonstrate that a sterile gas filter will deliver sterility under set operating conditions. However, gas filters can be damaged in situ, termed as having ‘lost their integrity’, if exposed to conditions outside their validated limits. Various factors can cause or contribute to filter damage, such as mishandling on installation, stress during steam sterilization (SIP), contact with aggressive chemicals or puncturing from finings in the pipework.

Through correlation of an integrity test to a live bacterial challenge, integrity testing is used to give assurance of filter performance within an application.

Currently, sterile gas filter systems are engineered to provide extended service lifetimes to suit the demand for increased process efficiency and reduced operational costs required by leading beverage processes. An increase in service lifetime of the filter further drives the need for integrity testing, so that the performance of the filter system can be monitored and assured throughout its complete operational life. As most beverage processes are also fast-paced production environments driven by efficient operations, there is also a demand for filter integrity testing to be a quick procedure, requiring little process downtime or operator input.

There are various traditional integrity test methods available to monitor the performance of a sterilizing gas filter. Such methods (Diffusional Flow, Pressure Decay, Bubble Point, Water Intrusion) are widely accepted methods which have been developed in-line with pharmaceutical processes. Although they are reliable in terms of determining filter integrity, they have significant disadvantages when employed to integrity test sterile air filters for fast-paced beverage production.

In order to reduce the impact of processing with a filter failure as best possible, any filter failure needs to be detected as soon as it occurs. This is done through integrity testing; a means of verifying the ability of a filter to provide the required quality of filtrate.
The main disadvantage of these methods for the beverage industry usually arises from the time-consuming operations required to prepare the filter for the test and to restore the filter system back into the process. Such operations include wetting the filter medium with a suitable solvent and the subsequent flushing and/or drying of the filter after testing. Another disadvantage of the liquid based methods is that they are not compatible with sterilizing gas filters which use a depth style filter matrix as opposed to a membrane as the filter layer.

Gas sterilizing filter systems which use depth style media as the filtration layer, such as Parker domnick hunter’s HIGH FLOW BIO-X, are suited to beverage operations due to the superior flow rates which can be achieved over membrane style filters, such as Parker domnick hunter’s HIGH FLOW TETPOR II. A superior flow rate per given pressure drop will improve filter system and process economics by two main mechanisms:

1. Smaller filter systems can be used for a given flow rate, which can reduce replacement element costs.
2. Reduced demand from the compressors, will yield a reduction in energy costs.

As many dairy production processes use sterilizing grade filters which have a depth media as the filter layer, there is a need for an integrity test which can also be used for this format of filter. The aerosol challenge test method performed by the Valairdata 3 satisfies this requirement as the method is applicable to filters using both membrane and depth materials.

Aerosol Challenge Testing with the Valairdata 3

Test Principles

During the aerosol challenge, the Valairdata 3 challenges the test filter with a high concentration of aerosolized oil droplets (FDA approved for food use) within the 0.2µm - 0.3µm size range (Figure 4).

This size is considered the most penetrating particle size (MPPS) for a sterilizing air filter, as retention mechanisms in gas are also influenced by electrostatic interactions, Brownian motion and inertial impaction, aside from size exclusion. The test simulates an aerosolized bacterial challenge under high loading, worst-case conditions. Any aerosol which passes through the filter to the downstream, sterile side is directed through a laser particle counter which directly detects the presence of any oil and calculates a percentage penetration value. On this basis a pass or fail result for the test filter is established.

As the retention ability of the test filter is actually tested during an aerosol challenge, the method can easily be applied to both depth and membrane style sterilizing grade gas filters. In addition to this, the method also carries the following process advantages.

![Figure 4. Compressed Air In Aerosol Out Valves](image)

![Figure 5. Schematic diagram of Valairdata 3 test set-up](image)
The Valairdata 3 can be used to test filters in-situ quickly and easily; the test time for a 10 inch filter is just 30 seconds. The test filter can be returned to process immediately following testing with no flushing or drying required, significantly reducing system downtime.

The Valairdata 3 aerosol challenge is fully correlated to aerosolized bacterial challenge with *Brevundimonas diminuta*, *Bacillus subtilis* and MS-2 Coliphage under ASTM guidelines, providing assurance of retention of all bacteria, spores and viruses in an airborne state. The unit offers increased test sensitivity versus traditional liquid based methods, particularly on larger filter systems.

The lightweight, portable design and long-life battery allows operators to test filters in-situ. This eliminates the risk of filter damage during removal / re-installation whilst transferring the test filter to a testing station. Once testing is complete, the results are easily transferred from the unit via a USB data stick for easy traceability of the Critical Control Point performance.

References:
1. PDA Technical Report 40, Sterilizing Filtration of Gases
2. High Quality Compressed Air for the Food Industry, Parker domnick hunter
3. Valairdata 3 brochure, Parker domnick hunter
4. HIGH FLOW BIO X data sheet, Parker domnick hunter
5. HIGH FLOW TETPOR II data sheet, Parker domnick hunter
Summary

Monitoring the performance of sterile gas filters used at critical control points is recommended to safeguard the packaging process from the risks of microbial contamination and is a requirement of the plant’s HACCP plan.

The aerosol challenge test performed by the Valairdata 3 can be used for both depth and membrane construction filter elements and provides accurate filter integrity results quickly and easily.

The Valairdata 3 therefore fits well within a plant’s HACCP framework and production objectives of maintaining product quality and increasing operational efficiency.

For further information, please contact your Parker domnick hunter representative.
Parker Worldwide

Europe, Middle East, Africa
AE – United Arab Emirates, Dubai
Tel: +971 4 8127100
parker.me@parker.com

AT – Austria, Wiener Neustadt
Tel: +43 (0)2622 23501-0
parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt
Tel: +43 (0)2622 23501 900
parker.easteurope@parker.com

AZ – Azerbaijan, Baku
Tel: +994 50 2233 458
parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles
Tel: +32 (0)67 280 900
parker.belgium@parker.com

BY – Belarus, Minsk
Tel: +375 17 209 9399
parker.belarus@parker.com

CH – Switzerland, Etoy
Tel: +41 (0)21 821 87 00
parker.switzerland@parker.com

CZ – Czech Republic, Klicany
Tel: +420 284 083 111
parker.czechrepublic@parker.com

DE – Germany, Kaarst
Tel: +49 (0)2131 4016 0
parker.germany@parker.com

DK – Denmark, Ballerup
Tel: +45 43 56 04 00
parker.denmark@parker.com

ES – Spain, Madrid
Tel: +34 902 330 001
parker.spain@parker.com

FI – Finland, Vantaa
Tel: +358 (0)20 753 2500
parker.finland@parker.com

FR – France, Contamine s’Arve
Tel: +33 (0)4 50 25 80 25
parker.france@parker.com

GR – Greece, Athens
Tel: +30 210 933 6450
parker.greece@parker.com

HU – Hungary, Budapest
Tel: +36 1 220 4155
parker.hungary@parker.com

IE – Ireland, Dublin
Tel: +353 (0)1 466 6370
parker.ireland@parker.com

IT – Italy, Corsico (MI)
Tel: +39 02 45 19 21
parker.italy@parker.com

KZ – Kazakhstan, Almaty
Tel: +7 727 505 800
parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal
Tel: +31 (0)541 585 000
parker.nl@parker.com

NO – Norway, Asker
Tel: +47 66 75 34 00
parker.norway@parker.com

PL – Poland, Warsaw
Tel: +48 (0)22 573 24 00
parker.poland@parker.com

PT – Portugal, Leca da Palmeira
Tel: +351 22 999 7360
parker.portugal@parker.com

RO – Romania, Bucharest
Tel: +40 21 252 1382
parker.ro@parker.com

SE – Sweden, Spånga
Tel: +46 (0) 59 79 50 00
parker.sweden@parker.com

SK – Slovakia, Banská Bystrica
Tel: +421 484 162 252
parker.slovakia@parker.com

SL – Slovenia, Novo Mesto
Tel: +386 7 337 6650
parker.slovenia@parker.com

TR – Turkey, Istanbul
Tel: +90 216 4997081
parker.turkey@parker.com

UK – United Kingdom, Warwick
Tel: +44 (0)1926 317 878
parker.uk@parker.com

ZA – South Africa, Kempton Park
Tel: +27 (0)11 961 0700
parker.southafrica@parker.com

North America
CA – Canada, Milton, Ontario
Tel: +1 905 693 3000

US – USA, Cleveland
Tel: +1 216 896 3000

Asia Pacific
AU – Australia, Castle Hill
Tel: +61 (0)2-9634 7777

CN – China, Shanghai
Tel: +86 21 2899 5000

HK – Hong Kong
Tel: +852 2428 8008

IN – India, Mumbai
Tel: +91 22 6513 7081-85

JP – Japan, Tokyo
Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul
Tel: +82 2 559 0400

MY – Malaysia, Shah Alam
Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington
Tel: +64 9 574 1744

SG – Singapore
Tel: +65 6887 6300

TH – Thailand, Bangkok
Tel: +662 717 8140

TW – Taiwan, Taipei
Tel: +886 2 2298 8987

South America
AR – Argentina, Buenos Aires
Tel: +54 3327 44 4129

BR – Brazil, Sao Jose dos Campos
Tel: +55 12 4009 3500

CL – Chile, Santiago
Tel: +56 2 623 1216

MX – Mexico, Apodaca
Tel: +52 81 8156 6000

VE – Venezuela, Caracas
Tel: +58 212 238 5422

Parker Hannifin Manufacturing Ltd
domnick hunter
Process Filtration - Europe
Durham Road
Birtley, Co. Durham
DH3 2SF, England
phone +44 (0)191 4105121
fax +44 (0)191 4105312
email: dhprocess@parker.com
www.parker.com/processfiltration

Parker Hannifin Corporation
domnick hunter
Process Filtration - North America
2340 Eastman Avenue
Oxnard, California, USA 93030
toll free: +1 877 784 2234
phone: +1 805 604 3400
domnick hunter
email: dhpsales.na@parker.com
www.parker.com/processfiltration

© 2015 Parker Hannifin Corporation. All rights reserved.

AN_IT_34_03/15_1D