ZHA Series Externally Heated &
ZBA Series Blower Purge
Adsorption Dryers
Compressed Air - The 4th Utility

Compressed air is a safe and reliable power source that is widely used throughout industry. Approximately 90% of all companies use compressed air in some aspect of their operations, however unlike gas, water and electricity, compressed air is generated on-site, giving the user responsibility for air quality and operational costs.

Without proper treatment, compressed air systems suffer from performance and reliability issues. Almost all of these issues can be directly attributed to contamination, the main sources of which are:

- The ambient air being drawn into the compressor
- The type and operation of the air compressor
- Compressed air storage vessels
- Distribution pipework

There are 10 major contaminants found in a compressed air system, these are:

- Water Vapor
- Condensed Water
- Water Aerosols
- Atmospheric Dirt
- Rust
- Pipescale
- Liquid Oil
- Oil Aerosols
- Oil Vapor
- Micro-organisms

The largest quantity of contamination introduced into the compressed air system originates from the atmospheric air drawn into the compressor and, not as often believed, introduced by the compressor itself. The most prolific and problematic of the contaminants is water. Water accounts for 99.9% of the total liquid contaminants found in a compressed air system.

Contaminant Removal

Failure to remove this contaminant can cause numerous problems in the compressed air system, such as:

- Corrosion within storage vessels and the distribution system
- Blocked or frozen valves, cylinders, air motors and tools
- Damaged production equipment
- Premature unplanned desiccant changes for adsorption dryers

In addition to problems associated with the compressed air system, allowing contamination such as water, particulate, oil and micro-organisms to exhaust from valves, cylinders, air motors and tools, can lead to an unhealthy working environment with the potential for personal injury, staff absences and financial compensation claims.

High efficiency compressed air filtration is not only used to remove particulate and oil, but most importantly, it removes water aerosols and is key to operating an efficient compressed air system.

Therefore, regardless of what type of compressor is installed, the same level of filtration is required.

Compressed air contamination will ultimately lead to:

- Inefficient production processes
- Spoiled, damaged or reworked products
- Reduced production efficiency
- Increase manufacturing costs
What is adsorption drying?

Drying compressed air through adsorption represents a purely physical process in which water vapor (adsorbate) is bound to the drying medium (adsorbent) through binding forces of molecular adhesion. Adsorbents are solids in spherical and granular form which are permeated by an array of pores. The water vapor is deposited onto the internal and external surface of the adsorption medium, without the formation of chemical compounds taking place, therefore the adsorption medium does not have to be replenished but only periodically regenerated.

Externally Heated

With their external and autonomous regeneration equipment, ZANDER's ZHA Series dryers are independent of compressor operation. Widely differing regeneration energy sources as heat carriers result in flexible, economical utilization also in explosion proof areas. Pressure dewpoints down to -100°F (-73°C) can be achieved with continuous operation. Pressure release and expansion during switch-over occurs only once within the 4-hour half-cycle and can be programmed to occur in a delayed manner, thus achieving reduced noise emission levels. Without proper pre-filtration, the regeneration air can be polluted by solids and this may influence not only the adsorber but also its adsorbing material. Increasing differential pressure inside the adsorber impairs the flow of regeneration air, resulting in a proportionally longer heating time. High inlet temperature accompanied by low operating pressure to reduce the capacity of the drying medium considerably, at the same time increasing the heat of reaction up to the lower range of regeneration temperatures, so that reliable adsorption is no longer assured throughout the entire cycle.

Externally heated regeneration adsorption dryers are used:
- for pressure dewpoints down to -100°F (-73°C)
- medium pressure and temperature ranges
- for CO2 gas drying
- if the ambient air contains a high dust level
- in an atmosphere rich in toxic substances

Blower Purge

Adsorption dryers with external heat regeneration and ambient blower system require only small quantities of processed and treated compressed air for purging and for building up pressure. The quantity of air required for regeneration is blown in, or drawn in from the surrounding atmosphere by means of a blower. An adsorption dryer with vacuum regeneration forms a logical and consistent further development. There is a growing tendency for using such system also in tower performance ranges thanks to the efficiencies that can be realized. Operating by blower regeneration offers a wide ranging freedom for adaptation to problematic marginal conditions. The regeneration system, consisting of a blower and a heater, is selected from a wide range of choices. Using different materials, customer-specific requirements can be met.
ZANDER ZHA Series Externally Heated Reactivated Desiccant Dryers use the adsorption method to remove moisture from compressed air. Pressure dewpoints ranging from -40°F (-40°C) to -100°F (-70°C) are achieved by directing the flow of saturated compressed air over a bed of desiccant. The most commonly used desiccant is activated alumina, a spherically shaped, hygroscopic material, selected for its consistent sizes, shape and extreme surface to mass ratio. This physically tough and chemically inert material is contained in two pressure vessels commonly referred to as “dual” or “twin” towers. As the saturated compressed air flows through the bed of the “on-line” tower, its moisture content adheres to the desiccant. The dry compressed air is then discharged from the vessel into the distribution system.

A microprocessor-based controller cycles the flow of compressed air between the towers. While one tower is “on-line” drying, the other tower is “off-line” regenerating. Regeneration, sometimes referred to as “purging”, is the process of stripping the accumulated moisture from the “off-line” bed.

Both types of ZANDER heat reactivated dryers (ZHA Series Externally Heat Reactivated & ZBA Series Blower Purge) combine heat with either a small portion of the dried compressed air or with forced ambient air for regeneration.

As heated, low pressure, purge air flows through the regenerating bed, it desorbs the moisture that had accumulated on the surface of the desiccant during the drying cycle and exhausts it to the atmosphere.

A cool-down cycle strips the heat from the bed so that a dewpoint/temperature spike is avoided.
ZANDER patented Multi-Port Regeneration System (ZHA Series) ensures superior desiccant bed regeneration and, as a result, provides better and more consistent dewpoint. The Multi-Port Regeneration System injects heated purge air at precise points up and down the length of the towers to provide a more balanced distribution of heat. This system prevents the desiccant on top from prematurely deteriorating while providing the bottom of the chamber with enough heated purge air to allow complete regeneration on every cycle.

The energy saving temperature monitoring system senses the exiting purge air temperature. When the purge air temperature increases to a pre-set point at which the desiccant bed is fully heated and regenerated, the blower and heater are turned off. ZANDER’s Secondary Blowdown System is standard on all ZHA and ZBA Series heat reactivated dryers 1000 scfm and larger. Secondary blowdown improves performance and efficiency while increasing desiccant life. The depressurization stage strips moisture from the bottom of the tank through a purge muffler. Once depressurization is complete, the system switches to the main exhaust where final regeneration is accomplished with low pressure purge air. Bypassing the exhaust mufflers eliminates back pressure and allows for more thorough regeneration.

Standard equipment
- Alarm, failure to switch
- Alarm, contacts for common
- Annunciator, systems sequence
- Blower flow interlock (ZBA Models)
- Blower silencer (ZBA Models)
- Compressor surge protection
- Control center
- Control system, dual redundant (Heat Protection System [HPS])
- Cycle stepping
- Dual mode, heatless backup
- Fail-safe operation
- Filter, control air
- Filters, pre & after
- Heater, long-life, low watt density
- Independent switching valves
- Indicator, moisture
- Indicator, purge flow

Optional equipment
- Actuator, valve limit switch
- Filters, pre and after sets
- Insulation, outdoor
- Modbus
- NEMA classifications, all

- Instrumentation, full
- Insulation, indoor tower
- Over-temperature safety control
- Ports, separate tower fill/drain
- Power saver exhaust shutdown
- Pressure equalization
- Screens, stainless steel diffuser
- Solid state sensors
- Standby mode
- Thermostats, dual heater
- Valves, cushioned seat check
- Valves, high performance butterfly (1000 scfm & larger)
- Vessels, ASME coded
- Warranty, 10-year heater
- Warranty, 5-year valve

- Non-yellow metals
- Pressure to 1000 psi g
- Purecare ecoWatch
- Voltages, non-standard
High performance components

Full-flow angle seat valves
Dryers up to 800 scfm are equipped with Parker’s time-proven and dependable non-lubricated full-flow angle seat valves, which carry a Five Year Warranty. (through 2”)

Rotary actuated valves
High performance, rotary actuated switching valves are standard on dryers 1000 scfm and larger. These premium, air operated butterfly valves are specifically designed for compressed air. They provide more opening and closing force compared to other types of valves. An indicator shows the “opened/closed” position of the valve and service can be performed without disturbing dryer piping.

These valves are so reliable, they carry a Five Year Factory Warranty.

Tower insulation
The tower, heater, and purge lines are insulated to increase dryer performance and efficiency by reducing radiant heat loss. It also keeps the unit within the safety parameters set forth by OSHA. Insulation suitable for indoor service is standard on all ZANDER heat reactivated dryers (Insulation suitable for outdoor service is an available option).

High-efficiency, quiet running regenerative (up to 3000 scfm) or centrifugal blowers (4000 scfm and larger)

Low-wattage high incoloy sheathed heater for efficient regeneration

Patented Multi-Port Injection for superior heat distribution and cooling (ZHA Series only)
iDemand Center

ZANDER's **iDemand Center** for Heat Reactivated Desiccant Air Dryers features a full complement of data acquisition functions. The easy to use **iDemand** affords superior dryer control along with digital telemetry for remote analysis of performance.

- Software included for virtual control, diagrams and graphics
- purecare ecoWatch ready with 68 channels of data & over 60 process valves
- Temperature & pressure instrumentation package
- ecotronic - Optional
- 4-20mA input with setpoint and alarm for connection to your flow meter
- Intelligent display with operational information
- Full system retentive alarm network (event) log
- Programmable process setpoints
- Dryer operating “state” annunciation display
- Automatic data logging 24/7, 365 days of all operational information
- 16 channel “programmable” common alarm
- RS-232 communications port (Optional RS-485)
- Access system via purecare ecoWatch or Modbus protocols
- 160 fields of operational information
- Connectivity: telco line, cellular wireless modem, cellular wireless internet, Ethernet
- Dual Mode communications. Modbus protocol, and purecare ecoWatch Protocol

iDemand operational status

Temperature (thermistor sensors)
- Purge air
- “Special” (fail-safe) heater over temperature
- Left exhaust
- Right exhaust
- Dryer inlet
- Dryer outlet

Pressure (transducer signals can be either 4-20ma or 1-5 volt DC)
- Inlet
- Left tower
- Right tower
- Purge
- Prefilter psi d (Models 400 scfm and above)
- Afterfilter psi d (Models 400 scfm and above)

ecotronic - optional
- Digital readout with power save feature
Compressed air systems are rarely constant and the dryer regeneration cycle frequency is dependent upon the actual inlet flow, pressure and temperature. Operation under inlet conditions where there is lower than design flow and temperature and or higher pressure, will result in less regeneration cycles and a maximum in the cost of utilities.

ecotronic provides a precision demand cycle control which terminates the adsorption (drying). This results in the full adsorptive capacity of the desiccant bed being utilized prior to switch over and regeneration. **ecotronic** is built into the dryer control system, with a precision hygrometer producing a continuous display of the outlet dewpoint. The preset contacts of the instruments are utilized to initiate tower changeover.

Digital readout

iDemand features a backlit four line character display that monitors operation and status including regenerating countdowns and time remaining.

Sequence annunciator

Indicates the status of each tower. LED’s indicate which tower is “on-line” drying, “off-line” regenerating as well as the regeneration stages.

Manual stepping

Allows the operator to quickly and safely step the dryer through a complete 8 hour cycle, in a matter of minutes.

Heater Protection System (HPS) (10 year heater warranty)

iDemand also controls **ZANDER’s** Heater Protection System (HPS). HPS ensures maximum reliability and eliminates the safety concerns often associated with heat reactivated dryers. Heaters are protected by a totally redundant dual shutdown system that utilizes independent mercury contactors. In addition to the redundant temperature controllers, the system monitors pressure and shuts the heater down in the event of low line pressure. Blower purge dryers have controls to prevent the heater from energizing if the blower is not running.

Dual mode heatless back up system

Allows the dryer to function in either the primary heated mode or the auxiliary heatless mode. Should the system experience a temporary overload or a heater failure, the dryer can easily be switched over to operate in the heatless mode. This way the dryer will remain online until such time as service can be conveniently scheduled. The Dual Mode Back Up System offers unparalleled flexibility, eliminates downtime and prevents business interruptions.
Design parameters

ZANDER ZHA & ZBA Series are designed to process a specific volume of compressed air and deliver it to the discharge at a desired pressure dewpoint. Both dryers are rated for a -40°F (-40°C) pressure dewpoint. Dewpoint spikes, inherent on all blower purge dryers, can be reduced by activating **ZANDER’s** standard Supplemental Cooldown Purge feature. Standard ratings are based on inlet conditions of +100°F (38°C), 100 psi g (6.9 bar g) and 100% flow. (Dryer performance will vary with different inlet conditions).

Moisture load, velocity, contact time and cycle time determine the amount of desiccant required. To assure design performance, each tower is carefully sized to allow a minimum contact time of 7 seconds. To prevent bed movement, desiccant dusting and fluidization, air flow velocity is kept below 55 feet per minute. Externally Heated and Blower Purge dryers are designed for an eight-hour cycle (four hours “on-line” drying, four hours “off-line” regenerating, cooling and repressurizing). For significant energy savings and Digital Dewpoint Readout, all **ZANDER** desiccant dryers can be equipped with an optional **ecotronic**.

ecotronic

An overview

The adsorption capacity of the desiccant within the dryer is essentially constant whereas the moisture loading and the air flow through the dryer are continuously varying as ambient and plant conditions change. In order to maintain the specified air quality downstream of the dryer, it has to be sized for the worst case conditions, namely the lowest pressure, highest flow and highest inlet temperature. These conditions may only occur for a small part of the service life of the dryer, for example, the highest inlet temperatures may only be present during the summer months. This means that the moisture loading on the desiccant beds is below the dryer’s capacity for much of its service life (e.g. quiet periods in between shifts usually have lower air supply requirements).

To gain access to this dynamic adsorption capacity, a moisture sensor is fitted which continually monitors the downstream dewpoint. **ecotronic** interrupts the normal sequence of the controller, which is only permitted to change over when the desiccant has adsorbed moisture to its capacity, effectively elongating the drying cycle. However, as regeneration has been optimized for a fully laden desiccant bed, this remains of constant duration resulting in a period of zero energy consumption (i.e. purging is discontinued). In this way, energy savings are obtained while maintaining a constant supply of clean dry air to your plant.
Microfilter: the complete package

Microfilter pre & after filters are included as standard on ZHA & ZBA Series.

Compressed air filters are now recognized as being an integral part of any system. Few, if any, compressed air systems can operate successfully without high efficiency filters. Production and process standards demand the finest quality air and components are now manufactured to such tight tolerances that no contamination is permitted.

Microfilter housings are built to the highest quality standards and have double surface protection. The aluminum housings feature alochrom and epoxy powder coating. Steel housings feature intensive cleaning, priming and acrylic paint. Thanks to the attention to quality surface treatment, ZANDER offers a 10-year filter housing guarantee. Microfilter uses machine pleated elements, which form the heart of the filter.

purecare goes well beyond simply designing a compressed air network. We stay close to the user, ensuring the system is correctly installed and commissioned and maintained throughout the service life of the dryer.

- extended warranty programs
- genuine ZANDER preventive maintenance kits
- factory trained and certified service technicians
- immediate technical assistance via phone
- factory auditing
- training for local personnel
- global support

purecare ensures that the user’s system operates perfectly and at the minimum cost at all times and for many years to come. Because neither time nor technology stand still, we ensure our users will continue to receive the very best support and the most advanced solutions. purecare will allow our users to concentrate on doing what they do best...maximizing their business. Welcome to purecare.
Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity scfm (Nm³/min)</th>
<th>Heater kW</th>
<th>Avg kW</th>
<th>Dimensions in (mm)</th>
<th>Approx Weight lbs (kg)</th>
<th>Prefilter</th>
<th>Afterfilter</th>
<th>Dryer Air In/Out</th>
<th>Power Supply (V/Ph/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHA 250</td>
<td>250 (7.1)</td>
<td>3</td>
<td>1.9</td>
<td>45 (11.4)</td>
<td>1180 [535]</td>
<td>G12XPDF</td>
<td>G12ZPCH</td>
<td>1 1/2” NPT</td>
<td>240/1/60</td>
</tr>
<tr>
<td>ZHA 300</td>
<td>300 (8.9)</td>
<td>4</td>
<td>2.3</td>
<td>47 (11.9)</td>
<td>1370 [621]</td>
<td>G12XPDF</td>
<td>G12ZPCH</td>
<td>1 1/2” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 400</td>
<td>400 (11.3)</td>
<td>6</td>
<td>3.0</td>
<td>74 (1880)</td>
<td>1400 [635]</td>
<td>G14XPDF</td>
<td>G14ZPCH</td>
<td>2” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 500</td>
<td>500 (14.1)</td>
<td>6</td>
<td>3.7</td>
<td>74 (1880)</td>
<td>2060 [934]</td>
<td>G14XPDF</td>
<td>G14ZPCH</td>
<td>2” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 600</td>
<td>600 (17.0)</td>
<td>9</td>
<td>4.5</td>
<td>74 (1880)</td>
<td>2350 [1066]</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>2” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 800</td>
<td>800 (22.7)</td>
<td>9</td>
<td>6.0</td>
<td>96 (2438)</td>
<td>3035 [1377]</td>
<td>G17ZPDF</td>
<td>G17ZPCH</td>
<td>2” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 1000</td>
<td>1000 (28.3)</td>
<td>13</td>
<td>7.4</td>
<td>96 (2438)</td>
<td>4195 [1903]</td>
<td>G19XPDF</td>
<td>G19ZPCH</td>
<td>3” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 1200</td>
<td>1200 (35.4)</td>
<td>13</td>
<td>8.9</td>
<td>96 (2438)</td>
<td>5215 [2365]</td>
<td>G19XPDF</td>
<td>G19ZPCH</td>
<td>3” NPT</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 1500</td>
<td>1500 (42.5)</td>
<td>18</td>
<td>11.2</td>
<td>144 (3658)</td>
<td>5715 [2592]</td>
<td>TF20XPDF</td>
<td>TF20ZPCH</td>
<td>4” Flg</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 2000</td>
<td>2000 (56.6)</td>
<td>25</td>
<td>16.4</td>
<td>144 (3658)</td>
<td>6250 [2835]</td>
<td>TF30XPDF</td>
<td>TF30ZPCH</td>
<td>4” Flg</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 2600</td>
<td>2600 (73.6)</td>
<td>25</td>
<td>22.3</td>
<td>144 (3658)</td>
<td>6750 [3062]</td>
<td>TF30XPDF</td>
<td>TF30ZPCH</td>
<td>4” Flg</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 3000</td>
<td>3000 (84.9)</td>
<td>30</td>
<td>29.7</td>
<td>144 (3658)</td>
<td>7055 [3200]</td>
<td>TF40XPDF</td>
<td>TF40ZPCH</td>
<td>6” Flg</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 4000</td>
<td>4000 (113.3)</td>
<td>38</td>
<td>37.0</td>
<td>168 (4627)</td>
<td>18080 [8031]</td>
<td>TF50XPDF</td>
<td>TF50ZPCH</td>
<td>6” Flg</td>
<td>460/3/60</td>
</tr>
<tr>
<td>ZHA 5000</td>
<td>5000 (141.4)</td>
<td>50</td>
<td>44.6</td>
<td>210 (5334)</td>
<td>20710 [9394]</td>
<td>TF60XPDF</td>
<td>TF60ZPCH</td>
<td>6” Flg</td>
<td>460/3/60</td>
</tr>
</tbody>
</table>

*Referenced to 68°F (20°C) and 14.5 psi a (1 bar a)

Flow Range @ 100 psi g (7 bar g):
- 250 scfm (7.1 Nm³/min) to 5000 scfm (141.6 Nm³/min)

Dewpoint:
- -40°F (-40°C) Standard, -100°F (-70°C) Optional

Maximum operating pressure:
- 140 psi g (10.3 bar g)

Minimum operating pressure:
- 80 psi g (5.5 bar g) (Lower minimum pressures available. Consult factory.)

Maximum inlet temperature:
- 120°F (49°C)

Minimum inlet temperature:
- 50°F (10°C)

Controls:
- Microprocessor

Dewpoint control optional

Standard electrical supply:
- Model ZHA 250: 240V/1Ph/60Hz
- Model ZHA 300 - ZHA 5000: 460V/3Ph/60Hz, Control power 115V/1Ph/60Hz (575V/3Ph/60Hz Optional)

Flow correction factors

Inlet Air Pressure Correction

<table>
<thead>
<tr>
<th>psi g</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar g</td>
<td>3.5</td>
<td>4.1</td>
<td>4.9</td>
<td>5.5</td>
<td>6.2</td>
<td>6.9</td>
<td>7.6</td>
<td>8.3</td>
<td>9.0</td>
<td>9.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Factor</td>
<td>0.56</td>
<td>0.65</td>
<td>0.74</td>
<td>0.83</td>
<td>0.91</td>
<td>1.00</td>
<td>1.09</td>
<td>1.18</td>
<td>1.27</td>
<td>1.37</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Temperature Correction

<table>
<thead>
<tr>
<th>°F</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>41</td>
<td>43</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>Factor</td>
<td>1.35</td>
<td>1.16</td>
<td>1.00</td>
<td>0.85</td>
<td>0.76</td>
<td>0.64</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Example Calculations:

- ZHA 500 corrected for 120 psi (8.3 bar) and 10°F (10°C):
 - Corrected Capacity = (Rated Capacity) x (psi Correction) x (Temperature Control)
 - Corrected Capacity = 500 scfm (13.9 Nm³/min) x 1.18 x 1.18 = 437 scfm (12.1 Nm³/min)
Flow Range & 100 psi g (7 bar g):

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity scfm (Nm³/min)</th>
<th>Blower HP</th>
<th>Heater kW</th>
<th>Avg kW</th>
<th>Dimensions in (mm)</th>
<th>Approx Weight</th>
<th>Prefilter</th>
<th>Afterfilter</th>
<th>Dryer Air In/Out</th>
<th>Power Supply (V/Ph/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZBA 500</td>
<td>500 (14.1)</td>
<td>2</td>
<td>12</td>
<td>7.4</td>
<td>74 (1880)</td>
<td>10 (1041)</td>
<td>90 (2286)</td>
<td>G14XPDF</td>
<td>G14ZPCH</td>
<td>2" NPT</td>
</tr>
<tr>
<td>ZBA 600</td>
<td>600 (17.0)</td>
<td>2</td>
<td>12</td>
<td>8.6</td>
<td>96 (2438)</td>
<td>48 (1219)</td>
<td>96 (2438)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>2" NPT</td>
</tr>
<tr>
<td>ZBA 800</td>
<td>800 (22.7)</td>
<td>3</td>
<td>18</td>
<td>13.4</td>
<td>108 (2743)</td>
<td>54 (1373)</td>
<td>10 (2286)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>2" NPT</td>
</tr>
<tr>
<td>ZBA 1000</td>
<td>1000 (28.3)</td>
<td>5</td>
<td>18</td>
<td>15.7</td>
<td>110 (2743)</td>
<td>54 (1373)</td>
<td>10 (2286)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>3" NPT</td>
</tr>
<tr>
<td>ZBA 1200</td>
<td>1250 (35.4)</td>
<td>5.5</td>
<td>25</td>
<td>18.4</td>
<td>120 (2743)</td>
<td>54 (1373)</td>
<td>113 (2870)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>3" NPT</td>
</tr>
<tr>
<td>ZBA 1500</td>
<td>1500 (42.7)</td>
<td>7.5</td>
<td>30</td>
<td>23.5</td>
<td>144 (3458)</td>
<td>72 (1829)</td>
<td>100 (2540)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>4" Flg</td>
</tr>
<tr>
<td>ZBA 2000</td>
<td>2000 (56.4)</td>
<td>7.5</td>
<td>38</td>
<td>31.6</td>
<td>164 (4358)</td>
<td>72 (1829)</td>
<td>100 (2540)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>4" Flg</td>
</tr>
<tr>
<td>ZBA 2400</td>
<td>2600 (73.6)</td>
<td>10</td>
<td>50</td>
<td>38.3</td>
<td>184 (4716)</td>
<td>84 (2134)</td>
<td>110 (2974)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>4" Flg</td>
</tr>
<tr>
<td>ZBA 3000</td>
<td>3000 (84.9)</td>
<td>10</td>
<td>60</td>
<td>42.9</td>
<td>204 (5182)</td>
<td>84 (2134)</td>
<td>111 (2974)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>6" Flg</td>
</tr>
<tr>
<td>ZBA 4000</td>
<td>4000 (113.3)</td>
<td>15</td>
<td>75</td>
<td>58.6</td>
<td>240 (6182)</td>
<td>96 (2540)</td>
<td>114 (2894)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>6" Flg</td>
</tr>
<tr>
<td>ZBA 5000</td>
<td>5000 (141.6)</td>
<td>15</td>
<td>100</td>
<td>70.2</td>
<td>276 (702)</td>
<td>96 (2540)</td>
<td>114 (2894)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>6" Flg</td>
</tr>
<tr>
<td>ZBA 6000</td>
<td>6000 (169.9)</td>
<td>20</td>
<td>115</td>
<td>86.0</td>
<td>304 (772)</td>
<td>96 (2540)</td>
<td>114 (2894)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>6" Flg</td>
</tr>
<tr>
<td>ZBA 7500</td>
<td>7500 (212.4)</td>
<td>25</td>
<td>135</td>
<td>107.0</td>
<td>330 (830)</td>
<td>96 (2540)</td>
<td>114 (2894)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>8" Flg</td>
</tr>
<tr>
<td>ZBA 9000</td>
<td>9000 (254.8)</td>
<td>30</td>
<td>150</td>
<td>129.0</td>
<td>356 (924)</td>
<td>96 (2540)</td>
<td>114 (2894)</td>
<td>G17XPDF</td>
<td>G17ZPCH</td>
<td>8" Flg</td>
</tr>
</tbody>
</table>

*Referenced to 68°F (20°C) and 14.5 psi a (1 bar a)

Flow Range & 100 psi g (7 bar g):

- 500 scfm (14.1 Nm³/min) to 9000 scfm (254.8 Nm³/min)

Dewpoint:

- -40°F [-40°C] Standard, -100°F [-70°C] Optional

Maximum operating pressure:

- 150 psi g (10 bar g)

Minimum operating pressure:

- 80 psi g (5.5 bar g) (Lower minimum pressures available. Consult factory.)

Maximum inlet temperature:

- 120°F (49°C)

Minimum inlet temperature:

- 50°F (10°C)

Controls:

- Microprocessor

Dewpoint control optional

Standard electrical supply:

- 460V/3Ph/60Hz, Control power 115V/1Ph/60Hz (575V/3Ph/60Hz Optional)

Flow correction factors

Inlet Air Pressure Correction

<table>
<thead>
<tr>
<th>psi g</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar g</td>
<td>3.5</td>
<td>4.1</td>
<td>4.9</td>
<td>5.5</td>
<td>6.2</td>
<td>6.9</td>
<td>7.6</td>
<td>8.3</td>
<td>9.0</td>
<td>9.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Factor</td>
<td>0.56</td>
<td>0.65</td>
<td>0.74</td>
<td>0.83</td>
<td>0.91</td>
<td>1.00</td>
<td>1.09</td>
<td>1.18</td>
<td>1.27</td>
<td>1.37</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Temperature Correction

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>32</td>
<td>1.00</td>
</tr>
<tr>
<td>105</td>
<td>35</td>
<td>0.85</td>
</tr>
<tr>
<td>110</td>
<td>41</td>
<td>0.74</td>
</tr>
<tr>
<td>115</td>
<td>43</td>
<td>0.64</td>
</tr>
<tr>
<td>120</td>
<td>46</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Example Calculations:

ZBA 500 corrected for 120 psi (8.3 bar) +110°F (43°C)

Corrected Capacity = (Rated Capacity) x (psi Correction) x (Temperature Control)

= 500 scfm (13.9 Nm³/min) x (1.18) x (1.18)

= 437 scfm (12.1 Nm³/min)