Fulflo® Honeycomb™ Filter Cartridges

Multipurpose Filtration Solutions With Parker’s Wound Depth Cartridges

Parker Process Filtration has been a leader in filter media innovation and performance since we first invented the Honeycomb™ Filter Tube over 65 years ago. Parker has the world’s largest manufacturing capacity for wound cartridges, offering superior quality along with technical, engineering and marketing support.

Effective removal ratings at nominal 90% efficiency from 0.5µm to 150µm range.

Benefits

- A broad range of media provide excellent compatibility with a variety of organic solvents, animal, petroleum and vegetable oils
- Optional core covers and end treatments assure fiber migration control
- Multiple length cartridges minimize changeout time, eliminate spacers and are available to fit competitive filter vessels
- FDA grade polypropylene (DOE only) cartridges certified to ANSI/NSF61 standard for contact with drinking water components
- Continuous strand winding geometry provides performance consistency
- One-piece metal extended center core option eliminates the need for cartridge guides in all competitive and Fulflo® multicartridge vessels
- A special snap-in extender is available for polypropylene cores
- Cotton, rayon, polypropylene, nylon and polyester materials are FDA listed as acceptable for potable and edible liquid contact according to CFR Title 21
- Various O-ring and end cap options are available

Applications

- Oxidizing Agents
- Concentrated
- Alkalies
- Potable Liquids
- Dilute Acids
- Mineral Acids & Alkalies
- Organic Acids & Solvents
- Petroleum Oils
- Photo Solutions
- Amines
- Water
- Prefilter for Membranes
Fulflo® Honeycomb™ Cartridges

Wound Depth Cartridge Design and Function

Wound cartridges provide true depth filtration utilizing hundreds of tapered filtering passages of controlled size and shape. Each layer of roving contributes to true depth filtration by trapping its share of particles. Wound cartridges offer a gradual pressure increase during cartridge life versus surface-type media that have an abrupt flow cutoff when loaded. In addition, the irregular outer layer reduces surface blinding, assuring both longer cartridge life and full cartridge utilization.

Ultrafine Wound Depth Cartridges for Critical Filtration Applications

Ultrafine cartridges are a unique member of the Honeycomb™ wound depth cartridge family. They are specifically designed for critical filtration applications in the 0.5µm range. When absolute 0.5µm filtration is required, the nominal Ultrafine cartridge can be used as a prefilter, thereby significantly extending membrane life. Ultrafine cartridges remove 90% of particles larger than 0.5µm in size. This type of filtration provides excellent protection for equipment or processes that must be protected from fine particles.

Applications include:
- Prefilter for membranes
- Rinse water in semiconductor manufacturing
- Fine filtration for ultrasonic parts, washer solvents and other high-purity solvents
- Prefilter for industrial reverse osmosis equipment

Ultrafine Ordering Information

- **Filter Medium**
 - C = FDA Grade Cotton
 - E = FDA Grade Rayon
 - M = FDA Grade Polypropylene
 - T = Industrial Grade Polypropylene
 - WC = Industrial Grade White Cotton

- **Nominal Length**
 - 9-4 = 9-7/8
 - 10 = 10
 - 19-4 = 19-1/2
 - 20 = 20
 - 29-4 = 29-1/4
 - 30 = 30-3/16
 - 39-4 = 39
 - 40 = 40-3/16

- **Core Material**
 - No Symbol = Tinned Steel
 - A = Polypropylene
 - A3 = Glass-Filled Polypropylene
 - G = 304 Stainless Steel
 - S = 316 Stainless Steel

- **Core Cover Material**
 - No Symbol = No Cover
 - B = Nylon
 - V = Nonwoven Polyester
 - W = Cellulosic Paper
 - Y = Polypropylene

- **End Cap Configuration**
 - None = DOE (without gaskets)
 - DO = DOE (With Gaskets)
 - TC = 222/Closed
 - SC = 226/Closed
 - TF = 222/Fin
 - SF = 226/Fin
 - SC = Extended Metal

Parker

ENGINEERING YOUR SUCCESS.
Fulflo® Honeycomb™ Cartridges

Specifications

■ Wound Cartridge Flow Factors for Aqueous (Water Based) Fluids (psid/gpm @ 1 cks)

<table>
<thead>
<tr>
<th>Rating (µm)</th>
<th>Polypropylene</th>
<th>Nylon</th>
<th>Cotton Rayon</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.9924</td>
<td>2.6590</td>
<td>0.5000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.7483</td>
<td>2.0000</td>
<td>0.4211</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3330</td>
<td>0.6250</td>
<td>0.3478</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2381</td>
<td>0.3636</td>
<td>0.1951</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1429</td>
<td>0.1931</td>
<td>0.1430</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0898</td>
<td>0.1075</td>
<td>0.1096</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.0704</td>
<td>0.0855</td>
<td>0.0816</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0595</td>
<td>0.0709</td>
<td>0.0678</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.0538</td>
<td>0.0645</td>
<td>0.0611</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.0500</td>
<td>0.0624</td>
<td>0.0590</td>
<td></td>
</tr>
</tbody>
</table>

■ Wound Cartridge Flow Factors for Nonaqueous (Solvent or Oil Based) Fluids (psid/gpm @ 1 cks)

<table>
<thead>
<tr>
<th>Rating (µm)</th>
<th>Polypropylene</th>
<th>Nylon</th>
<th>Cotton Rayon</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.8350</td>
<td>1.9500</td>
<td>0.5000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.7519</td>
<td>0.4211</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5800</td>
<td>0.3003</td>
<td>0.3478</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.3003</td>
<td>0.1949</td>
<td>0.1951</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1299</td>
<td>0.1000</td>
<td>0.1430</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0560</td>
<td>0.0350</td>
<td>0.1096</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.0200</td>
<td>0.0175</td>
<td>0.0816</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.0141</td>
<td>0.0130</td>
<td>0.0678</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.0120</td>
<td>0.0100</td>
<td>0.0611</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.0080</td>
<td>0.0065</td>
<td>0.0590</td>
<td></td>
</tr>
</tbody>
</table>

■ Wound Cartridge Flow Factors for Aqueous (Water Based) Fluids (psid/gpm @ 1 cks)

Flow Rate and Pressure Drop Formulae:

Flow Rate (gpm) = Clean ∆P x Length Factor
Viscosity x Flow Factor
Clean ∆P = Flow Rate x Viscosity x Flow Factor x Length Factor

Notes:
1. Clean ∆P is PSI differential at start.
2. Viscosity is centistokes.
3. Use Conversion Tables for other units.
4. Flow Factor is ∆P/GPM at 1 cks for 10 in (or single).
5. Length Factors convert flow or ∆P from 10 in (single length) to required cartridge length.

■ Wound Cartridge Nominal Micrometer Ratings

<table>
<thead>
<tr>
<th>Cartridge Designation</th>
<th>Rating (µm)</th>
<th>Compressed Air and Gas Micron Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafine (C, E, M, T, WC)</td>
<td>0.5</td>
<td>Less than 0.5</td>
</tr>
</tbody>
</table>
Fulflo® Honeycomb™ Cartridges

Specifications

Nominal Removal Ratings:

- @ 90% efficiency from 0.5µm to 150µm

Maximum Recommended Operating Conditions:

- Change Out ΔP: 30 psi (2.1 bar)
- ΔP @ Ambient Temperature: 60 psi (4.1 bar)
- Flow Rate: 10 gpm (38 lpm) per 10 in length
- Temperature (See table below)

Dimensions:

- 1 in ID x 2-7/16 OD
- 3 in to 50 in lengths

Maximum Operating Temperature @ 35 psid

<table>
<thead>
<tr>
<th>Cartridge Material</th>
<th>Metal Core</th>
<th>Polypropylene Core</th>
<th>Glass-Filled Polypropylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>250°F (121°C)</td>
<td>120°F (49°C)</td>
<td>—</td>
</tr>
<tr>
<td>Glass</td>
<td>750°F (402°C)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nylon</td>
<td>275°F (135°C)</td>
<td>120°F (49°C)</td>
<td>—</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>200°F (93°C)</td>
<td>120°F (49°C)</td>
<td>200°F (93°C)</td>
</tr>
<tr>
<td>Polyester</td>
<td>275°F (135°C)</td>
<td>120°F (49°C)</td>
<td>—</td>
</tr>
<tr>
<td>Rayon</td>
<td>250°F (121°C)</td>
<td>120°F (49°C)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: All glass cartridges have standard glass core cover.

Wound Cartridge Glass Fiber Nominal Micrometer Ratings

<table>
<thead>
<tr>
<th>Cartridge Designation</th>
<th>Liquids</th>
<th>Compressed Air and Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>K5B</td>
<td>100 - 150</td>
<td>10+</td>
</tr>
<tr>
<td>K5R</td>
<td>75 - 100</td>
<td>10</td>
</tr>
<tr>
<td>K6R</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>K8R</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>K10R</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>K12R</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>K15R</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>K19R</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>K23R</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>K27R</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>K39R</td>
<td>0.5</td>
<td><1</td>
</tr>
</tbody>
</table>

Ordering Information

Filter Medium

- No Symbol = Cotton (FDA)
- E = FDA Grade Rayon
- K = Baked Glass Fiber
- M = FDA Grade Polypropylene
- N = Nylon (FDA)
- R = Rayon
- S = Polyester (FDA)
- T = Industrial Grade Polypropylene
- U = Natural Cotton
- UK = Unbaked Glass Fiber
- WC = White Cotton

Density Micron

- 6R 150
- 8R 100
- 10R 75
- 11R 50
- 12R 40
- 13R 30
- 14R 25
- 15R 20
- 17R 15
- 19R 10
- 21R 7
- 23R 5
- 27R 3
- 39R 1

Nominal Length

- 3 = 3
- 4 = 4
- 5 = 5
- 6 = 6
- 7 = 7
- 8 = 8
- 9 = 9-7/8
- 9-7/8 = 9-7/8
- 10 = 10
- 19-4 = 19-1/2
- 20 = 20
- 29-4 = 29-1/4
- 30 = 30-3/16
- 39-4 = 39
- 40 = 40-3/16
- 50 = 50

Core Material

- No Symbol = No Cover
- B = Nylon
- V = Nonwoven Polyester
- W = Cellulosic Paper
- Y = Polypropylene

Core Cover Material

- No Symbol = No Treatment
- D = Sodium Silicate
- L = Lacquer
- M = Singed

End Cap Configuration

- None = DOE (without gaskets)
- O8 = Std. Open End/Polypro Spring Closed End
- TF = 222/FIn
- SC = 226/Closed
- SF = 226/FIn
- XX = Polypyo Extender
- XB = Ex.Coe Open End/ Polypro Spring Closed End
- XC = Extended Metal

Nominal Cartridge Diameter

- 1 in ID x 2-7/16 in OD
- 1 in ID x 2-11/16 in OD
- 1 in ID x 4-1/2 in OD
- (9-7/8 and 20 in length only) for Fulflo LTG and Ametek Big Blue Vessels

Specifications are subject to change without notification.

© 2007 Parker Hannafin Process Advanced Filtration Inc. All Rights Reserved SPEC-C1000-Rev. A 01/08