Summary
Due to its unique lubricating and moisture holding properties and its natural presence in many body tissues, Hyaluronic Acid (HA) is used in an ever increasing number of applications in pharmaceuticals, cosmetics and medical devices. One area in particular is ophthalmic lens care and prescriptive drug formulations.

This expanding market has also led to the development of new production methods of raw HA based on Bacillus Subtilis fermentations, which are reported to sterile filter more easily. However, even at low concentrations, sterile filtration of solutions containing HA can present challenges due to their high viscosity.

Parker domnick hunter can work with you to increase the efficiency and economy of your sterile filtration system by maximising throughput, minimising filtration trains and limiting downtime.

Contact Information:
Parker Hannifin Ltd
Parker domnick hunter
Process Division
Durham Road
Birtley
Co. Durham DH3 2SF

phone +44 (0)191 4105121
fax +44 (0)191 4105312
dhprocess@parker.com

www.domnickhunter.com

Key Filtration Requirements:

- **No alteration to solution characteristics**
 Any effect of filtration the properties of HA in the solution will have an adverse effect on the efficacy of the final product.

- **High throughputs**
 It is important for process economy that the sterile filtration system is able to process the viscous HA solution without blockage.

To aid in choosing a sterile filtration system, Parker domnick hunter have conducted a study to evaluate the effect of HA concentration and molecular weight, on filtration throughput for different filter types.
The Effect of Filtration on Solution Characteristics

The relationship between HA concentration and viscosity for solutions of HA with two different molecular weights - 760 kDa from Bacillus Subtilis and 1.1 MDa from Streptococcus - is shown in figure 1. It can be seen that the solutions of the two different molecular weights have similar viscosities up to a concentration of 0.2%. At this point the trends diverge and the viscosity of the 1.1 MDa HA solutions increase more sharply with concentration, making them more viscous than the 760 kDa solutions at an equivalent concentration.

The direct relationship between concentration and viscosity means that viscosity can be used as an indication of a change in the characteristics of the HA before and after filtration. To determine if filtration has any effect on the properties of the HA solution, the viscosity was measured before and after filtration of the 760 kDa HA at different starting concentrations. The results, represented in figure 2, show that the viscosity of the solution is not significantly changed after filtration.

Filterability Studies

Constant flow filterability studies were conducted with a selection of filter media on samples of HA with molecular weights of 760 kDa and 1.1 MDa over a range of concentrations to investigate the effect on throughput.

To ensure a close representation of actual commercial products, the solutions were made up in 1% PBS (Phosphate Buffered Solution). The HA was fully dissolved by continually stirring for 18 hours at 400 rpm. All testing was conducted at 25 °C (77 °F). The filterability studies were conducted on Parker domnick hunter’s 0.2 µm PROPOR SG single layer and 0.2 µm PROPOR HC dual layer PES products; a competitor’s 0.2 µm single layer PVDF product was also tested for comparison.

Figures 3a to 3c show differential pressure against throughput for 760 kDa and 1.1 MDa HA solutions at concentrations of 0.025% and 0.2%. At constant flow, filter blockage is shown by an increase in differential pressure. Generally, it can be seen that the PROPOR HC dual layer filter significantly extends throughputs compared to single layer products for all of the HA solutions tested.
Low molecular weight HA solutions
The testing showed that lower molecular weight HA solutions (figure 3a) are filtered more easily than higher molecular weight solutions (figures 3b and 3c) and the total throughput was greater.

Even at relatively high concentrations, the dual layer PROPOR HC outperformed both of the single layer products, achieving high throughputs and maintaining a constant low pressure.

High molecular weight HA solutions
The solutions of higher molecular weight HA proved more difficult to filter (figures 3b and 3c) and, as the concentration increased, it became increasingly difficult for the single layer products to pass any of the HA solution through.

Figure 3c shows that, at higher concentrations, the single layer products are unable to process the solution at all; however, the solution was able to pass through the dual layer PROPOR HC product.

These results demonstrate that, through use of a dual layer membrane product, sterile filtration can still be considered as an option, even for solutions that are unable to pass through single layer products. This avoids reliance on other methods of sterilisation such as heat and radiation which may damage vital biological or proteinaceous components in the final product.

Variation in filterability
The results of the study showed that the filterability of different HA solutions can vary considerably from one to the next. For this reason, Parker domnick hunter recommends that small scale filterability studies are conducted on an individual basis to ascertain the optimal filtration system for any given product. Our Technical Support Group (TSG) can assist in this.
Conclusion
Studies conducted by Parker domnick hunter into the filtration of hyaluronic acid based solutions have shown:

- The viscosity of HA solutions is directly related to the concentration and higher molecular weight HA is more viscous than lower molecular weight at concentrations over 0.2%.
- The viscosity of an HA solution is not affected by filtration and, therefore filtration does not have an impact on the characteristics of the solution.
- The higher the concentration and molecular weight of the HA, the more viscous and difficult to filter the solution becomes, eventually becoming too viscous to be processed by single layer filter products.
- Dual layer PES out-performs the single layer products for throughput of HA based solutions.

Filtration choice
Parker domnick hunter’s PROPOR HC dual layer PES filter incorporates a highly asymmetric prefilter layer which allows it to cope well with highly viscous solutions. During this study, it has been shown to perform very effectively when filtering hyaluronic acid based solutions and can increase throughputs to up to 10 times that of single membrane products. Using the PROPOR HC for sterile filtration of products containing hyaluronic acid can reduce downtime due to frequent filter changes and decrease system size for greater process economy.

Product Selection
The right product for your application

<table>
<thead>
<tr>
<th>Product</th>
<th>Membrane</th>
<th>Main Feature</th>
<th>Cost Saving Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TETPOR HP</td>
<td>Hydrophilic PTFE</td>
<td>Zero binding of preservatives</td>
<td>Filling can begin immediately without preconditioning of filters to eliminate product wastage.</td>
</tr>
<tr>
<td>PROPOR SG</td>
<td>PES</td>
<td>Very high flow rates</td>
<td>Faster processing for minimal batch turnaround time.</td>
</tr>
<tr>
<td>PROPOR HC</td>
<td>PES plus PES prefilter layer</td>
<td>Increased capacity</td>
<td>Economical filtration of difficult to filter solutions with a high concentration of viscosity enhancer.</td>
</tr>
</tbody>
</table>

N.B. This table is for guidance only. Filterability can vary from one solution to the next and Parker domnick hunter recommends that filterability studies are conducted on an individual basis to ascertain the optimal filtration system.
Products

Sterile Liquid Filtration

- **PROPOR SG**
 - 0.2 micron
 - Polyethersulphone
 - High Flow
 - Low preservative binding

- **PROPOR HC**
 - 0.2 micron
 - Polyethersulphone
 - High capacity
 - Low preservative binding

- **PROPOR LR**
 - 0.1 micron
 - Polyethersulphone
 - Retentive to diminutive organisms
 - High flow rates

- **TETPOR HP**
 - 0.2 micron
 - Hydrophilic PTFE
 - Elimination of preservative binding

- **PORECHECK IV**
 - Integrity Testing
 - Bubble point testing
 - Diffusional flow / pressure decay testing
 - Water intrusion testing

Liquid Filtration

- **PROPOR BR**
 - 0.2 micron
 - Polyethersulphone
 - Bioburden reduction
 - Maximum throughput

- **PROCLEAR PP**
 - 0.6 - 100 micron
 - Polypropylene
 - Particulate removal
 - Robust to withstand aggressive chemicals

- **PROCLEAR GP**
 - 0.5 micron
 - Glass Fibre / Polypropylene
 - High capacity
 - Maximum protection of downstream membrane

- **Housings**
 - A full range of stainless steel housings specifically designed for pharmaceutical applications

Sterile Gas Filtration

- **TETPOR AIR**
 - 0.2 micron
 - PTFE
 - Validated by liquid and aerosol challenge

- **HIGH FLOW TETPOR II**
 - 0.2 micron
 - PTFE
 - Unrivalled flow rates
 - Validated by liquid and aerosol challenge

- **HIGH FLOW TETPOR HT**
 - 0.2 micron
 - PTFE
 - Continuous use at high temperatures
 - Validated by liquid and aerosol challenge

- **TETPOR PLUS**
 - 0.2 micron
 - PTFE
 - Resistant to chemical attack
 - Ideal for venting of ozonated water tanks

- **VALAIRDATA II**
 - Integrity Testing
 - Aerosol challenge testing
 - Integrity testing of gas filters

- **Housings**
 - A full range of stainless steel housings specifically designed for pharmaceutical applications
Sales Offices Worldwide

AE – UAE, Dubai
Tel: +971 4 8127100
parker.me@parker.com

AR – Argentina, Buenos Aires
Tel: +54 30 2622 32501-0
parker.austria@parker.com

AT – Austria, Wiener Neustadt
Tel: +43 (0)2622 23501 900
parker.easteurope@parker.com

AU – Australia, Castle Hill
Tel: +61 (0)2-9634 7777

AZ – Azerbaijan, Baku
Tel: +994 50 2233 458
parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles
Tel: +32 (0)67 280 900
parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS
Tel: +55 51 3470 9144

BY – Belarus, Minsk
Tel: +375 17 209 9399
parker.belarus@parker.com

CA – Canada, Milton, Ontario
Tel: +1 905 693 3000

CH – Switzerland, Etoy
Tel: +41 (0)21 769 9399

CN – China, Shanghai
Tel: +86 21 9031 2525

CZ – Czech Republic, Klesany
Tel: +420 284 083 111
parker.cz@parker.com

DE – Germany, Kaarst
Tel: +49 (0)2131 4016 0
parker.germany@parker.com

DK – Denmark, Ballerup
Tel: +45 43 56 04 00
parker.denmark@parker.com

ES – Spain, Madrid
Tel: +34 902 33 00 01
parker.spain@parker.com

FI – Finland, Vantaa
Tel: +358 (0)20 753 2500
parker.finland@parker.com

FR – France, Contamine s/Arve
Tel: +33 (0)4 50 25 80 25
parker.france@parker.com

GR – Greece, Athens
Tel: +30 210 933 6450
parker.greece@parker.com

HK – Hong Kong
Tel: +852 2428 8008

HU – Hungary, Budapest
Tel: +36 1 220 4155
parker.hungary@parker.com

IE – Ireland, Dublin
Tel: +353 (0)1 466 6370
parker.ie@parker.com

IN – India, Mumbai
Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI)
Tel: +39 02 45 19 21
parker.italy@parker.com

JP – Japan, Tokyo
Tel: +81 3 6408 3901

KE – Kenya, Nairobi
Tel: +254 72 523 4000

KR – South Korea, Seoul
Tel: +82 2 154 4000

LV – Latvia, Riga
Tel: +371 6 745 2601
parker.latvia@parker.com

MX – Mexico, Apodaca
Tel: +52 81 8156 6000

MY – Malaysia, Shah Alam
Tel: +60 3 8275 2121

NL – The Netherlands, Oldenzaal
Tel: +31 (0)541 585 000
parker.nl@parker.com

NO – Norway, Ski
Tel: +47 64 91 10 00
parker.norge@parker.com

NZ – New Zealand, Mt Wellington
Tel: +64 9 574 1744

PL – Poland, Warsaw
Tel: +48 (0)22 573 24 00
parker.poland@parker.com

PT – Portugal, Leca da Palmeira
Tel: +351 22 999 7360
parker.portugal@parker.com

RO – Romania, Bucharest
Tel: +40 21 252 1382
parker.romania@parker.com

RU – Russia, Moscow
Tel: +7 495 645-2156
parker.russia@parker.com

SE – Sweden, Spånga
Tel: +46 (0)8 59 79 50 00
parker.sweden@parker.com

SG – Singapore
Tel: +65 6887 6300

SK – Slovakia, Banska Bystrica
Tel: +421 484 162 252
parker.slovakia@parker.com

SL – Slovenia, Nova Mesto
Tel: +386 7 337 6650
parker.slovenia@parker.com

TW – Taiwan, Taipei
Tel: +886 2 2298 8987

UK – United Kingdom, Warwick
Tel: +44 (0)1902 317 878
parker.uk@parker.com

US – USA, Cleveland
Tel: +1 216 896 3000

VE – Venezuela, Caracas
Tel: +58 212 238 5422

ZA – South Africa, Kempton Park
Tel: +27 (0)11 961 0700
parker.southafrica@parker.com

© 2009 Parker Hannifin Corporation
Parker Hannifin Ltd
Parker domnick hunter
Process Division
Durham Road
Birtley, Co. Durham
DH3 2SF, England
phone +44 (0)191 4105121
fax +44 (0)191 4105312
email: dhp@parker.com
www.domnickhunter.com