PRECISION REGULATOR

<table>
<thead>
<tr>
<th>Bulletin Number</th>
<th>Bulletin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1R270E Rev. 7</td>
<td>27R “B” Installation & Service</td>
</tr>
<tr>
<td>2R101G Rev. 15</td>
<td>27R “C” Installation & Service</td>
</tr>
<tr>
<td>83-528-000-80 Rev. 4</td>
<td>51R, 52R, 53R, 54R Dial Regulator, Installation & Service</td>
</tr>
<tr>
<td>1R205 Rev. 1</td>
<td>3550 Regulator Installation & Service</td>
</tr>
<tr>
<td>35507019</td>
<td>3550 Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R409 Rev. 2</td>
<td>P3BA45 Pneumatic Input Signal Amplifier, Installation & Service</td>
</tr>
<tr>
<td>2R408 Rev. 2</td>
<td>P3BA208 Pneumatic Input Signal Amplifier, Installation & Service</td>
</tr>
<tr>
<td>2FR400 Rev. 2</td>
<td>P3EA632 Filter/Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R406 Rev. 2</td>
<td>P3RA102 Standard Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R410 Rev. 2</td>
<td>P3RA102BP Relief Valve, Installation & Service</td>
</tr>
<tr>
<td>2R407 Rev. 2</td>
<td>P3RA171 Vacuum Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R405 Rev. 2</td>
<td>P3RA302 Compact Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R205 Rev. 2</td>
<td>R210 High Precision Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R205 Rev. 2</td>
<td>R220 High Precision Regulator, Installation & Service</td>
</tr>
<tr>
<td>2R206 Rev. 2</td>
<td>R230 High Flow Precision Regulator, Installation & Service</td>
</tr>
<tr>
<td>FRL-APP-01</td>
<td>Precision Regulators, Application Guide</td>
</tr>
<tr>
<td>Safety Guide</td>
<td>PDN Safety Guide</td>
</tr>
</tbody>
</table>

Visit www.pdnplu.com for additional instruction sheets.
Specifications

Supply Pressure: 250 PSIG, (17 bar), (1700 kPa) Maximum

Flow Capacity (SCFM): 25 (42.5 m³/HR) @ 100 psig, (7 bar), (700 kPa) supply and 20 PSIG, (1.5 bar), (150 kPa) setpoint

Exhaust Capacity (SCFM): 0.8 (1.36 m³/HR) where downstream pressure is 5 PSIG, (.35 bar), (35 kPa) above 20 PSIG, (1.5 bar), (150 kPa) setpoint. (0.8 SCFM for 120 # unit)

Maximum Supply Pressure: 250 PSIG, (14 bar), (1400 kPa)

Consumption: Undetectable

Supply Pressure Effect: Less than 1.25 PSIG, (.09 bar), (9 kPa) change for 100 psig, [7.0 BAR], (700 kPa) change in supply pressure (1.90 psig for 120 # unit)

Sensitivity:

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°F to + 160°F</td>
<td>-40°C to + 71°C</td>
</tr>
</tbody>
</table>

Materials of Construction

Body and Housing: Epoxy Coated Aluminum

Trim: Stainless Steel, Nickel Plated Steel

Elastomers: Nitrile

Installation

Use the two 23/64 thru holes in the Body to mount the Model 632. Mount the regulator with the Dripwell Drain Plug at the lowest point for adequate drainage.

Clean all pipelines to remove dirt and scale before installation.

Apply a minimum amount of pipe compound to the male threads of the fitting only. Do Not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid contaminating the regulator. Install the regulator in the air line.

Introduction

Follow these instructions when installing, operating, or servicing this product.
The Inlet and Outlet ports are labeled “In” and “Out”. Tighten all connections securely. Avoid undersized fittings that limit the flow through the regulator. For more information, see Figure 1.

NOTE: Oil free air must be applied to the regulator. If an air line lubricator is used, it MUST be located downstream of the regulator to avoid interference with performance.

Operation

When you turn the Adjustment Screw to a specific setpoint, the Spring exerts a downward force against the top of the Diaphragm Assembly. This downward force opens the Supply Valve. Output pressure flows through the Outlet Port and the passage to the Control Chamber where it creates an upward force on the bottom of the Diaphragm Assembly.

When the setpoint is reached, the force of the Spring that acts on the top of the Diaphragm Assembly balances with the force of output pressure that acts on the bottom of the Diaphragm Assembly and closes the Supply Valve.

When the output pressure increases above the setpoint, the Diaphragm Assembly moves upward and opens the Exhaust Valve.

Output pressure flows through the Exhaust Valve and out of the Exhaust Vent on the side of the unit until it reaches the setpoint.

1. To increase pressure, turn the Adjustment Screw clockwise. To decrease pressure, turn the Adjustment Screw counterclockwise. For more information, see Figure 2.

2. To remove entrained liquids from the Dripwell, open the Drain Cock on the bottom of the Dripwell Assembly. The flow through the regulator and the amount of entrained oil or water in the air determine how often you should empty the Dripwell. For more information, see Figure 2.

NOTE: The presence of some diester oils in the air lines can accelerate elastomer deterioration and decrease the life span of this unit.

632 Series Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Service Kit</td>
<td>PS19968-NR</td>
</tr>
<tr>
<td>Tamper Resistant Kit</td>
<td>PS12165</td>
</tr>
</tbody>
</table>

Figure 1

- Ø0.2 (50.8) Gage Option
- Stainless Steel Trim Option
- Ø1.91 Knob Ø(48.5)
- 0.32 Ø(8.1) Thru 2 Mounting Holes
- 1/4 NPT INLET
- 1.25 (31.8)
- 2.25 (57.2)
- 2.92 (74.2)

Figure 2

- Adjustment Screw
- Bonnet
- Diaphragm Assembly
- Body
- Dripwell Assembly
- Drain Cock
- OUTLET
- IN
- 7.17/32 (189.1) Max. Screw
- 2.71 (68.9)
- 0.75 Hex Tamper Resistant (19.1)
- 0.31 ø Screw (7.9)
- 2.56 (65)
- 8.37 (212.6)
Pneumatic Division
Richland, Michigan 49083
269-629-5000

Installation & Service Instructions:
1R205
Prep-Air® II Air Line
Precision Regulators
ISSUED: November, 2003
Supersedes: April, 2003
Doc.# 1R205, ECN# 030539, Rev. 1

Introduction
Follow these instructions when installing, operating, or servicing
the product.

Application Limits
These products are intended for use in general purpose
compressed air systems only.

Operating Pressure Range: kPa PSIG bar

PRIMARY – Maximum	3448	500	34.48
SECONDARY – Spring Pressure			
30 PSIG Minimum	3.4	0.5	0.03
Maximum	207	30	20.70
60 PSIG Minimum	7	1	0.07
Maximum	414	60	4.14
150 PSIG Minimum	14	2	0.14
Maximum	1034	150	10.34

Operating Temperature Range:
-40°C * to 93°C (-40°F to 200°F)

* Temperatures below 0°C (32°F) require moisture free air.

Installation:
1. Regulator should be installed with reasonable accessibility
 for service whenever possible — repair service kits are
 available. Keep pipe or tubing lengths to a minimum with
 inside clean and free of dirt and chips. Pipe joint compound
 should be used sparingly and applied only to the male pipe
 — never into the female port. Do not use PTFE tape to seal pipe joints — pieces have a tendency to break off and lodge inside the unit, possibly causing malfunction.
2. Install regulator so that air flows from “IN” to “OUT” as marked
 on the regulator. Installation must be upstream from devices
 it is to service (lubricator, valve, cylinder or tool), and mounted
closely to these devices. Mounting may be in any position.
3. Gauge ports are located on both sides of the regulator body
 for your convenience. It is necessary to install a gauge or
 pipe plug into each port during installation.
4. Remove plastic plug from vent hole in bonnet.
5. For protection against rust, pipe scale and other foreign matter,
 install a filter on the upstream (high pressure) side as closely
 to the regulator as possible.

WARNING
To avoid unpredictable system behavior that can cause personal
injury and property damage:
- Disconnect electrical supply (when necessary) before
 installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected
to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure,
temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below
 freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be
 performed by knowledgeable personnel who understand how
 pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical
 supplies (when necessary) should be connected and the product
 tested for proper function and leakage. If audible leakage is
 present, or the product does not operate properly, do not put
 into use.
- Warnings and specifications on the product should not be
 covered by paint, etc. If masking is not possible, contact your
 local representative for replacement labels.

ANSI Symbols

![Relieving](image1)
![Non-Relieving](image2)

![WARNING](image3)

Product rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

Failure or improper selection or improper use of the
products and/or systems described herein or related
items can cause death, personal injury and property
damage.

This document and other information from The Company, its subsidiaries
and authorized distributors provide product and/or system options for
further investigation by users having technical expertise. It is important
that you analyze all aspects of your application, including consequences
of any failure and review the information concerning the product or
systems in the current product catalog. Due to the variety of operating
conditions and applications for these products or systems, the user,
through its own analysis and testing, is solely responsible for making
the final selection of the products and systems and assuring that all
performance, safety and warning requirements of the application are
met.
The products described herein, including without limitation, product
features, specifications, designs, availability and pricing, are subject to
change by The Company and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR
INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE
THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
Prep-Air® II Precision Regulator

Operation:
With the adjusting knob turned fully counterclockwise (no spring load), and pressure supplied to the regulator inlet port, the valve poppet assembly (N) is closed. Turning the adjusting knob clockwise applies a load to control spring (E). This load causes the diaphragm (F) and the valve poppet assembly (N) to move downward allowing flow across the seat area (S) created between the poppet assembly and the seat. Pressure in the downstream line is sensed below the diaaphragm assembly (F) and offsets the load of control spring (E). As downstream pressure rises, poppet assembly (N) and the diaaphragm assembly (F) move upward until the area (S) is closed and the load of the control spring (E) and pressure under the diaaphragm assembly (F) are in balance. A reduced outlet pressure has now been obtained, depending on spring load. Creating a demand downstream, such as opening a valve, results in a reduced pressure under the control spring (E) load of control spring (E) now causes the poppet assembly to move downward opening seat area (S) allowing air to flow to meet the downstream demand. The flow of downstream air is metered by the amount of opening (S). Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaaphragm assembly (F) to move upward against control spring (E), open vent hole (T), and vent the excess pressure to atmosphere through the hole (U) in the bonnet (C). (This occurs in the relieving type regulator only.)

CAUTION
REGULATOR PRESSURE ADJUSTMENT - The working range of the knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design.

Regulator Spring Conversion
Turn the control knob (A) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.
1. Remove (6) screws (B), bonnet (C) control spring (E) and spring cap (D).
2. Place the control spring (E) and spring cap (D) into position over the diaaphragm assembly.
3. Place the bonnet (C) into position over the spring cap (D) and reassemble the (6) screws (B). Tighten screws 3.2 to 3.6 Nm (28 to 32 in-lbs) in progressive steps using a crisscross pattern.

Service:
1. Turn the control knob (A) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.
2. Remove two #10-32 screws (R) on the bottom of the regulator body (K) releasing the retaining plate (P) and cap (Q). Pull out the valve poppet assembly (N) and screen (M). Discard inner valve assembly and screen.
3. Remove six screws (B) holding the bonnet (C) in place. Remove bonnet, spring cap (D), spring (E) and diaaphragm assembly (F). Discard diaaphragm assembly.
4. Remove the four screws (G) holding the seal plate and jet tube assembly (H) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove the cork seal plate gasket (J) and discard.
5. Tap the seat ring (L) out of the bottom side of the regulator body (K) using a wooden dowel. Discard seat ring.
6. Clean all retained parts with mild soap and water.
7. Insert the new seat ring (L) into the body making sure the brass side enters first. Press into place being careful not to damage the rubber seat. Note: a small amount of silicone grease applied to the outside of the seat ring is advised for easy assembly.
8. Assemble the new cork gasket (J) and jet tube assembly (H), making sure the jet tube is positioned into the outlet port of the regulator. Insert and tighten the four retaining screws (G) torque 3.2 to 3.6 Nm (28 to 32 in-lbs).
9. Insert the new valve poppet assembly (N) making sure the

Service Kits / Accessories:

<table>
<thead>
<tr>
<th>Relieving Service Kit</th>
<th>Non-Relieving Service Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Springs (Color)</td>
<td>Control Springs (Color)</td>
</tr>
<tr>
<td>0.5-30 PSIG (Red) 03550 8000</td>
<td>0.5-30 PSIG (Red) 03550 8009</td>
</tr>
<tr>
<td>1-60 PSIG (Blue) 03550 7116</td>
<td>1-60 PSIG (Blue) 03550 7117</td>
</tr>
<tr>
<td>2-150 PSIG (Green) 03550 7101</td>
<td>2-150 PSIG (Green) 03550 7102</td>
</tr>
<tr>
<td>Gauges</td>
<td></td>
</tr>
<tr>
<td>0-30 PSIG 03560 0030</td>
<td>0-30 PSIG 03560 0030</td>
</tr>
<tr>
<td>0-60 PSIG 03560 0100</td>
<td>0-60 PSIG 03560 0100</td>
</tr>
<tr>
<td>0-160 PSIG 03560 0200</td>
<td>0-160 PSIG 03560 0200</td>
</tr>
<tr>
<td>Mounting Brackets</td>
<td></td>
</tr>
<tr>
<td>Pipe Mounting 00902 0400</td>
<td>Pipe Mounting 00902 0400</td>
</tr>
<tr>
<td>Right Angle Mounting 00902 0400</td>
<td>Right Angle Mounting 00902 0400</td>
</tr>
</tbody>
</table>

NOTE: A slight flow of air through the bonnet vent hole is necessary for proper operation of the regulator.
Introduction

Follow these instructions when installing, operating, or servicing this product.

Application Limits

These products are intended for use in general purpose compressed air systems only.

Operating Pressure:

<table>
<thead>
<tr>
<th>Maximum Inlet Pressure</th>
<th>kPa</th>
<th>PSIG</th>
<th>bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1720</td>
<td>250</td>
<td>17.2</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature Range: 0°C to 80°C (32°F to 175°F)

WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

Installation

1. This unit should be installed with reasonable accessibility for service whenever possible - repair service kits are available. Keep pipe and tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe - never into the female port. Do not use PTFE tape to seal pipe joints - pieces have a tendency to break off and lodge inside unit, possibly causing malfunction.

2. Install unit so that air flow is in the direction of arrow. Installation must be upstream of and close to the devices it is to service (valve, cylinder, tool, etc.). Mounting may be in any position.

3. Gauge ports are located on both sides of the regulator body for your convenience. It is necessary to install a gauge or pipe plugs into each port during installation.

4. For protection against rust, pipe scale, and other foreign matter, install a filter on the upstream (high pressure) side as close to the regulator as possible.

Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinder, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 550 to 410 kPa (80 to 60 PSIG) is best accomplished by dropping the secondary pressure to 350 kPa (50 PSIG), then adjusting upward to 410 kPa (60 PSIG).

Symbols

- Relieving Regulator
 - Adjustable
- Non-Relieving Regulator
 - Adjustable

WARNING

Product rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

Failure or Improper Selection or Improper Use of the Products and/or Systems Described Herein or Related Items Can Cause Death, Personal Injury and Property Damage.

This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.

Extra Copies of These Instructions are Available for Inclusion in Equipment / Maintenance Manuals That Utilize These Products. Contact Your Local Representative.
Maintenance Procedures

⚠️ **CAUTION:**

SHUT OFF AIR SUPPLY and exhaust the primary and secondary pressure before disassembling regulator unit. (Turning the knob counterclockwise reduces regulator's setting, but does not vent downstream pressure on non-relieving regulators.)

1. The regulator can be disassembled for servicing without removal from line.

2. Occasionally remove bottom plug and clean plug, body and valve seat.

3. **TO DISASSEMBLE** – Shut off air to regulator and vent air lines on both sides of regulator. Turn adjusting knob counterclockwise to relieve compression on spring. Remove the screws, cover and spring. Diaphragm assembly can now be removed. By removing bottom plug and spring the valve stem can be removed from the bottom of the regulator.

4. **IF UNIT WILL NOT REGULATE TO DESIRED PRESSURE, OR IF PRESSURE BECOMES EXCESSIVE** – Remove bottom plug, spring, and valve assembly. Clean all parts and check valve seat for wear or damage. Replace worn or damaged parts.

5. **IF UNIT LEAKS AT RELIEF PORT** – Install proper repair kit as listed under Kits and Parts Available.

Kits and Parts Available

Kit No.	**Description**
PS170 | Self-Relieving Repair Kit
(Includes self-relieving diaphragm assembly, valve assembly, and o-rings)
PS177 | Regulating Springs:
0-15 PSI
PS171 | 0-30 PSI
PS172 | 0-50 PSI
PS175 | 0-120 PSI

Accessories

Kit No.	**Description**
PS173B | Wall Mounting Bracket
PS179 | Tamper Resistant Kit

CAUTION

EXCEPT as otherwise specified by the manufacturer, this product is specifically designed for compressed air service only, and use with any other fluid (liquid or gas) is a misapplication. For example, use with or injection of certain hazardous liquid or gases in the system (such as alcohol or liquid petroleum gas) could be harmful to the unit or result in a combustible condition or hazardous external leakage. Manufacturer’s warranties are void in the event of misapplication, and manufacturer assumes no responsibility for any resulting loss.

The relief flow capacity of relieving type regulators is limited. Under some operating conditions, the secondary (outlet) pressure could increase above the initial setting. If overpressure conditions could cause malfunctions or failure of downstream equipment, additional external pressure relief devices of suitable capacity must be installed.

Before using with fluids other than air, or for nonindustrial applications, or for life support systems, consult manufacturer for written approval.
Pneumatic Division
Richland, Michigan 49083
269-629-5000

WARNING
To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

WARNING
Product rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

Safety Guide
For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the Pneumatic Division Safety Guide at: www.parker.com/safety

Introduction
Follow these instructions when installing, operating, or servicing the product.

Application Limits
These products are intended for use in general purpose compressed air systems only.

Operating Pressure:

<table>
<thead>
<tr>
<th>Maximum Inlet Pressure</th>
<th>kPa</th>
<th>psig</th>
<th>bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1720</td>
<td>250</td>
<td>17.2</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature Range:
0°C to 80°C (32°F to 175°F)

Symbols
- Relieving Regulator Adjustable
- Non-Relieving Regulator Adjustable

Installation
1. The regulator should be installed with reasonable accessibility for service whenever possible - repair service kits are available. Keep pipe and tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe - never into the female port. Do not use PTFE tape to seal pipe joints - pieces have a tendency to break off and lodge inside unit, possibly causing malfunction.

2. Install regulator so that air flow is in the direction of arrow. Installation must be upstream (high pressure) side and as close to the devices it is to service (valve, cylinder, tool, etc.). Mounting may be in any position.

3. Gauge ports are located on both sides of the regulator body for your convenience. It is necessary to install a gauge or pipe plugs into each port during installation.

4. For protection against rust, pipe scale, and other foreign matter, install a filter on the upstream (high pressure) side as close to the regulator as possible.

Operation
1. Before turning on the air supply, turn the adjusting knob (Economy, Precision, Compact, Standard) counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob/ handle clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 550 to 410 kPa (80 to 60 psig) is best accomplished by dropping the secondary pressure to 350 kPa (50 psig), then adjusting upward to 410 kPa (60 psig).

On Economy, Precision, Compact and Standard units, push the adjusting knob down to lock the pressure setting. And on the Hi-Flow unit, tighten the hex nut against the bonnet to lock setting.

Service

CAUTION:
SHUT OFF AIR SUPPLY and exhaust the primary and secondary pressure before disassembling regulator unit. (Turning the knob/ handle counterclockwise reduces regulator’s setting, but does not vent downstream pressure on non-relieving regulators.)

CAUTION:
Lubricate parts with a mineral based oil/grease or silicone grease. DO NOT use synthetic oils/greases such as esters.

WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuming that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
A. Use the following procedure to service Economy, Precision, Compact and Standard units, see Figures 1 & 2:

1. Disengage the adjusting knob by pulling upward. Turn adjusting knob counterclockwise until the compression is released from the pressure control spring.

2. Unscrew the threaded collar and remove the bonnet assembly. Next, disassemble, clean, and carefully inspect parts for wear and/or damage. If replacement is necessary, use parts from service kits.

3. Lubricate o-ring and lip seals with grease (supplied with kits).

4. Install diaphragm assembly into bonnet. Then install bonnet assembly to body and tighten threaded collar hand tight plus 1/4 turn.

B. Servicing the Poppet Assembly:

1. Exhaust system air pressure as previously described. Then remove cap by unscrewing it from body. Next, remove poppet assembly, o-ring (Economy, Precision), cap's o-ring and poppet return spring.

2. Next, disassemble, clean, and carefully inspect parts for wear and/or damage. If replacement is necessary, use parts from service kits.

3. Lubricate o-ring (Economy, Precision) and sliding surfaces using grease supplied with service kit.

4. Turn on air supply and adjust to desired secondary pressure as described in the Operation section.

Turn on air pressure and check regulator for leakage. If leakage occurs, DO NOT OPERATE — conduct repairs again.

If you have questions concerning how to service this unit, contact your local authorized dealer or your customer service representative.

- Lightly grease with provided lubricant.
- Inspect for nicks, scratches, and surface imperfections.
- If present, reduced service life is probable and future replacement should be planned.
- Clean with lint-free cloth.

Service Kits Available

<table>
<thead>
<tr>
<th></th>
<th>Economy</th>
<th>Precision</th>
<th>Compact</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator (Standard)</td>
<td>PS908</td>
<td>PS907</td>
<td>PS708</td>
<td>PS808</td>
</tr>
<tr>
<td>Repair Kit (Relieving)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS708R</td>
<td>PS808R</td>
</tr>
<tr>
<td>Regulator (Reverse Flow)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS709</td>
<td>PS809</td>
</tr>
<tr>
<td>Repair Kit (Relieving)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS709R</td>
<td>PS809R</td>
</tr>
<tr>
<td>Regulator (Standard)</td>
<td>PS909</td>
<td>N/A</td>
<td>PS709</td>
<td>PS809</td>
</tr>
<tr>
<td>Repair Kit (Non-Relieving)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS709R</td>
<td>PS809R</td>
</tr>
<tr>
<td>Seat Insert Repair Kit (Standard)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS713</td>
<td>PS813</td>
</tr>
<tr>
<td>Seat Insert Repair Kit (Reverse Flow)</td>
<td>N/A</td>
<td>N/A</td>
<td>PS713</td>
<td>PS813</td>
</tr>
<tr>
<td>Air Pilot Conversion (Non-Relieving)</td>
<td>PS944</td>
<td>N/A</td>
<td>PS744</td>
<td>PS744</td>
</tr>
<tr>
<td>(Relieving)</td>
<td>N/A</td>
<td>PS745</td>
<td>PS745</td>
<td></td>
</tr>
<tr>
<td>Mounting Bracket Kit</td>
<td>PS963</td>
<td>PS963</td>
<td>PS707</td>
<td>PS807</td>
</tr>
<tr>
<td>Relieving Piston Kit</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Non-Relieving Piston Kit</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Body Service Kit (Balanced Poppet)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Gauges:

- Low Pressure 0 to 410 kPa (0 to 60 psig) K4515N14060 K4520N14060
- Standard Pressure 0 to 1100 kPa (0 to 160 psig) K4515N14160 K4520N14160
- High Pressure 0 to 2070 kPa (0 to 300 psig) K4515N14300 K4520N14300

Figure 1: Economy & Precision

Figure 2: Compact & Standard
Installation & Service Instructions:
IS-2R205
High Precision Regulators
ISSUED: July, 2004
Supersedes: April, 2004
Doc.# 2R205, ECN# 040593, Rev. 2

Introduction
Follow these instructions when installing, operating, or servicing the product.

Application Limits
These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: PSIG bar

PRIMARY - Maximum	150	10.34
SECONDARY - Spring Pressure	40 PSIG	2.76
Minimum	2	0.14
Maximum	40	2.76
120 PSIG Minimum	2	0.14
Maximum	120	8.27

Operating Temperature Range:
-18°C † to 65°C (0°F to 150°F)

†Temperatures below 0°C (32°F) require moisture free air.

Installation:
1. Regulator should be installed with reasonable accessibility for service whenever possible — repair service kits are available. Keep pipe or tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe — never into the female port. Do not use PTFE tape to seal pipe joints — pieces have a tendency to break off and lodge inside the unit, possibly causing malfunction.
2. Install regulator so that air flows from “IN” to “OUT” as marked on the regulator. Installation must be upstream from devices it is to service (lubricator, valve, cylinder or tool), and mounted closely to these devices. Mounting may be in any position.
3. Gauge ports are located on both sides of the regulator body for your convenience. It is necessary to install a gauge or pipe plug into each port during installation.
4. Remove plastic plug from vent hole in bonnet.
5. For protection against rust, pipe scale and other foreign matter, install a filter on the upstream (high pressure) side as closely to the regulator as possible.

ANSI Symbols

Service Kits / Accessories:

<table>
<thead>
<tr>
<th>Service Kits</th>
<th>RKR210A*</th>
<th>RKR210C*</th>
<th>RKR220C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-40 PSIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-120 PSIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Relieving</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting Brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Mounting</td>
</tr>
<tr>
<td>Right Angle Mounting</td>
</tr>
</tbody>
</table>

* Parts in Kit

⚠️ WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠️ WARNING

Product rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

⚠️ WARNING

Failure or improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.

Extra copies of these instructions are available for inclusion in equipment / maintenance manuals that utilize these products. Contact your local representative.
High Precision Regulator

Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 5.5 to 4.1 bar (80 to 60 PSIG) is best accomplished by dropping the secondary pressure to 3.5 kPa (50 PSIG), then adjusting upward to 4.1 bar (60 PSIG).

Service: (Always vent all air pressure before servicing)

1. Turn the control knob (A) fully counterclockwise. Remove upstream air supply.

2. Remove four screws (B) holding the bonnet (A) in place. Remove bonnet assembly, gasket (C), balance control assembly (D), spring (E), protector diaphragm (F), diaphragm housing (G), and control diaphragm (H). Discard gasket (C), protector diaphragm (F), and control diaphragm (H).

3. Remove bleed screw (M) and discard.

4. Remove spring retainer (L) and spring (K).

5. Clean all retained parts with mild soap and water.

6. Install spring (K) and spring retainer (L) into body making sure that the spring is installed correctly, see Fig. 1. Tighten spring retainer 2.6 to 3.1 Nm (23 to 27 in-lbs).

7. Place the new control diaphragm (H) onto the body (K). Put diaphragm housing (G) on next followed by the new protector diaphragm (F) and spring (E). Put balance control assembly (D) on next then the new gasket (C) followed by bonnet assembly (A) and reassemble the four screws (B). Tighten screws 3.2 to 3.6 Nm (28 to 32 in-lbs) in progressive steps using a crisscross pattern.

8. Install new bleed screw (M). Tighten screw 1.5 to 1.9 Nm (13 to 17 in-lbs) in progressive steps using a crisscross pattern.

9. Admit inlet pressure and turn the adjusting knob (A) to obtain the desired pressure.

NOTE: A slight flow of air through the bonnet vent hole is necessary for proper operation of the regulator.
Specifications

Supply Pressure 250 PSIG, (17.0 bar), (1700 kPa) Maximum
Flow Capacity –
40 SCFM (68 m³/H) @ 100 PSIG, (7.0 bar), (700 kPa) Supply and
20 PSIG, (1.5 bar), (150 kPa) Setpoint
Exhaust Capacity –
2.0 SCFM (3.4 m³/H) where Downstream Pressure is 5 PSIG,
(.35 bar), (35 kPa) above 20 PSIG (.1 bar), (150 kPa) Setpoint
Supply Pressure Effect –
Less than 0.2 PSIG, (.014 bar), (.14 kPa) for 100 PSIG, (7.0 bar),
(700 kPa) change in Supply Pressure
Sensitivity......................less than 0.01 of inlet for 100 PSIG, (7.0 bar),
(700 kPa)
Ambient Temperature-40°F to +200°F, (-40°C to 93.3°C)

AUX Hazardous Locations –
Acceptable for use in Zones 1 and 2 for Gas Atmosphere:
Groups IIA and IIB and Zones 21 and 22 for Dust Atmospheres

Materials of Construction

Body and Housing Aluminum
Diaphragms................................. Nitrile on Dacron
Trim... Brass

Installation

Clean all pipe lines to remove dirt and scale before installation. Apply
a minimum amount of pipe compound to the male threads of the fitting
only. Do not use TFE tape to seal the threads. Start with the third thread
back and work away from the end of the fitting to avoid the possibility of
contaminating the regulator. Install the regulator in the airline. The inlet
and outlet connections are labeled on the underside of the regulator
with the arrows pointing in the direction of the flow. Tighten connections
securely. Avoid undersized fittings that will limit the flow through the
regulator and cause a pressure drop downstream. For more information,
see Figure 1 and Figure 2.

NOTE: Oil free air must be applied to the regulator. Use a filter to remove
dirt and entrained liquid in the airline ahead of the regulator. If
an airline lubricator is used, it MUST be located downstream
of the regulator, to avoid interference with regulator performance.

Introduction

Follow these instructions when installing, operating, or servicing this
product

General Information

The 302 Series regulator is designed for applications that require high
capacity and accurate process control. A poppet valve which is balanced
by utilizing a rolling diaphragm, insures a constant output pressure even
during wide supply pressure variations. Stability of regulated pressure is
maintained under varying flow conditions through the use of an aspirator
tube which adjusts the air supply in accordance with the flow velocity.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION
IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS.
CONTACT YOUR LOCAL REPRESENTATIVE.
302 Series Compact Precision Regulator

Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 80 to 60 PSIG (550 to 410 kPa) is best accomplished by dropping the secondary pressure to 50 PSIG (350 kPa), then adjusting upward to 60 PSIG (410 kPa). Tighten the lock knob against the bonnet to lock the pressure setting.

Service

1. Turn the control knob (1) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.

2. Remove two #10-32 screws (19) on the bottom of the regulator body (13) releasing the retaining plate (17) and cap (18). Pull out the inner valve assembly (16) and screen (15). Discard inner valve assembly and screen.

3. Remove four screws (5) holding the bonnet (6) in place. Remove bonnet, spring seat (7), spring (8) and diaphragm assembly (9). Discard diaphragm assembly.

4. Remove the four screws (10) holding the seal plate and jet tube assembly (11) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove the cork seal plate gasket (12) and discard.

5. Tap the seat ring (14) out of the bottom side of the regulator body (13) using a wooden dowel. Discard seat ring.

6. Clean all retained parts with mild soap and water.

7. Insert the new seat ring (13) into the body making sure the brass side enters first. Press into place being careful not to damage the rubber seat. Note: a small amount of silicone grease applied to the outside of the seat ring is advised for easy assembly.

8. Assemble the new cork gasket (12) and jet tube assembly (11), making sure the jet tube is positioned into the outlet port of the regulator. Insert and tighten the four retaining screws (10).

9. Insert the new inner valve assembly (16) making sure the screen (15) is centrally located in the groove on the top side of the valve body. Replace the retaining plate (17) and cap (18), and securely tighten using the two #10-32 screws (19).

10. Place the new diaphragm assembly (9) over the valve stem and pilot bushing. Align the screw holes in the diaphragm with those in the regulator body (16). Place the main spring (8) and spring seat (7) into position on top of the diaphragm assembly.

11. Place the bonnet (6) into position over the spring seat (7) and reassemble the four screws (5). Tighten screws in progressive steps using a crisscross pattern.

12. Admit inlet pressure and turn the adjusting knob to obtain the desired pressure.

NOTE: A slight flow of air through the bonnet vent hole is necessary for proper operation of the regulator.

302 Series Kits and Accessories

Service Kits

- 0 to 2 PSIG, Nitrile, Relieving..PS16116-1
- 0 to 2 PSIG & 0 to 10 PSIG, Nitrile, Nonrelieving...............PS16116-2
- 0 to 2 PSIG, Fluorocarbon, Relieving.................................PS16116-9
- 0 to 2 PSIG & 0 to 10 PSIG, Fluorocarbon, Nonrelieving,..PS16116-10
- 0 to 10, 1/2 to 30, 1 to 60, & 2 to 100 PSIG, Relieving......PS16116-13
- 1/2 to 30, 1 to 60, & 2 to 100 PSIG, Nonrelieving........PS16116-14
- 1/2 to 30, 1 to 60, & 2 to 100 PSIG, Fluorocarbon, Relieving...PS16116-21
- 1/2 to 30, 1 to 60, & 2 to 100 PSIG, Fluorocarbon, NonrelievingPS16116-22

Tamper Resistant Kit...PS12163
Introduction

Follow these instructions when installing, operating, or servicing this product.

General Information

The 102 Series regulator is designed for applications that require high capacity and accurate process control. A poppet valve which is balanced by utilizing a rolling diaphragm, insures a constant output pressure even during wide supply pressure variations. Stability of regulated pressure is maintained under varying flow conditions through the use of an aspirator tube which adjusts the air supply in accordance with the flow velocity.

Specifications

Supply Pressure 500 PSI (35.0 bar), (3500 kPa) Maximum
Flow Capacity –
40 SCFM (68 m³/HR) @ 100 PSI, (7.0 bar), (700 kPa) Supply and 20 PSI, (1.5 bar), (150 kPa) Setpoint
Exhaust Capacity –
5.5 SCFM (9.35 m³/HR) where Downstream Pressure is 5 PSI, (.35 bar), (35 kPa) above 20 PSI, (1.5 bar), (150 kPa) Setpoint
Supply Pressure Effect –
Less than 0.1 PSI (.007 bar), (.7 kPa) for 100 PSI, (7.0 bar), (700 kPa) change in Supply Pressure
Sensitivity....................... less than 1/8" (.32 cm) Water Column
Ambient Temperature-40°F to +200°F, (-40°C to 93.3°C)
ATEX Hazardous Locations –
Acceptable for use in Zones 1 and 2 for Gas Atmosphere:
Groups IIA and IIB and Zones 21 and 22 for Dust Atmospheres

Materials of Construction

Body and Housing................................. Aluminum
Diaphragms................................. Buna N on Dacron (Standard Unit Only)
Trim.. Brass, Zinc Plated Steel

Installation

Clean all pipe lines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape to seal the threads. Start with the third thread and outlet connections are labeled on the underside of the regulator with the arrows pointing in the direction of the flow. Tighten connections properly until leakage is detected. If audible leakage is present, or the product does not operate properly, do not put into use.

WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

WARNING

Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed maximum primary pressure rating.

CAUTION

EXCEPT as otherwise specified by the manufacturer, this product is specifically designed for compressed air service only, and use with any other fluid (liquid or gas) is a misapplication. For example, use with or injection of certain hazardous liquid or gases in the system (such as alcohol or liquid petroleum gas) could be harmful to the unit or result in a combustible condition or hazardous external leakage. Manufacturer’s warranties are void in the event of misapplication, and manufacturer assumes no responsibility for any resulting loss.

The relief flow capacity of relieving type regulators is limited. Under some operating conditions, the secondary (outlet) pressure could increase above the initial setting. If overpressure conditions could cause malfunctions or failure of downstream equipment, additional external pressure relief devices of suitable capacity must be installed.

Before using with fluids other than air, for nonindustrial applications, or for life support systems, consult manufacturer for written approval.

Failure or Improper Selection or Improper Use of the Products and/or Systems Described Herein or Related Items Can Cause Death, Personal Injury and Property Damage.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 80 to 60 PSIG (550 to 410 kPa) is best accomplished by dropping the secondary pressure to 50 PSIG (350 kPa), then adjusting upward to 60 PSIG (410 kPa). Tighten the lock nut against the bonnet to lock the pressure setting.

Service (Figure 2)

1. Turn the control knob (1) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.

2. Remove two #10-32 screws (20) on the bottom of the regulator body (14) releasing the retaining plate (18) and cap (19). Pull out the inner valve assembly (17) and screen (16). Discard inner valve assembly and screen.

3. Remove six screws (5) holding the bonnet (6) in place. Remove bonnet, spring cap (7), spring (8) and diaphragm assembly (10). Discard diaphragm assembly.

4. Remove the four screws (7) holding the seal plate and jet tube assembly (6) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove the cork seal plate gasket (9) and discard.

5. Tap the seat ring (15) out of the bottom side of the regulator body (14) using a wooden dowel. Discard seat ring.

6. Clean all retained parts with mild soap and water.

7. Insert the new seat ring (15) into the body making sure the brass side enters first. Press into place being careful not to damage the rubber seal. Note: a small amount of silicone grease applied to the outside of the seat ring is advised for easy assembly.

8. Assemble the new seal plate gasket (13) and seal plate (12), making sure the jet tube is positioned into the outlet port of the regulator. Insert and tighten the four retaining screws (11).

9. Insert the new inner valve assembly (17) making sure the screen (16) is centrally located in the groove on the top side of the valve body. Replace the retaining plate (18) and cap (19), and securely tighten using the two #10-32 screws (20).

10. Place the new diaphragm assembly (10) over the valve stem and pilot bushing. Align the screw holes in the diaphragm with those in the regulator body (14). Place the main spring (8) and spring seat (7) into position on top of the diaphragm assembly.

11. Place the bonnet (6) into position over the spring seat (7) and reassemble the six screws (5). Tighten screws in progressive steps using a crisscross pattern.

12. Admit inlet pressure and turn the adjusting knob to obtain the desired pressure.

NOTE: Keep the vent hole in the Bonnet clear for proper regulator operation. Lubricate the adjusting screw with Molycote “G”.

Operating Principles

The 102 Series regulator uses the force balance principal to control the movement of the Valve Assembly that controls the output pressure. When the regulator is adjusted for a specific set point, the downward force of the Positive Bias Spring moves the Diaphragm Assembly downward. The Supply Valve opens and allows air to pass to the Outlet Port. As the set point is reached, the downward force exerted by the Positive Bias Spring is balanced by the force of the downstream pressure that acts on the Diaphragm Assembly. The resultant force moves the Supply Valve upward to reduce the flow of air to the Outlet Port. Outlet pressure is maintained as a result of balance between forces acting on the top and bottom of the Diaphragm Assembly.
Introduction

Follow these instructions when installing, operating, or servicing this product.

General Information

The Model 171 Series is a high accuracy vacuum regulator that provides uniform vacuum regulation independent of vacuum supply changes and flow demand.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Supply (Max)</td>
<td>760 torr (29.92 Hg) (Full Vacuum)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>3 SCFM @ 650 torr Supply, 250 torr setpoint</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1/8" W.C.</td>
</tr>
<tr>
<td>Ambient Temperature Limits</td>
<td>-40°F to +200°F, (-40°C to +93.2°C)</td>
</tr>
<tr>
<td>Vacuum Supply Effect</td>
<td>Less than 1 torr for 100 torr change in vacuum supply</td>
</tr>
</tbody>
</table>

Materials of Construction –

Body & Housing: Aluminum
Elastomers: Nitrile
Trim: Brass, Zinc Plated Steel

Installation

Clean all pipe lines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the regulator. Install the regulator in the airline. The inlet and outlet connections are labeled on the underside of the regulator with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the regulator and cause a pressure drop downstream. For more information, see Figure 1.

NOTE: Oil free air must be applied to the regulator. Use a filter to remove dirt and entrained liquid in the airline ahead of the regulator. If an airline lubricator is used, it MUST be located downstream of the regulator, to avoid interference with regulator performance.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 550 to 410 kPa (80 to 60 PSIG) is best accomplished by dropping the secondary pressure to 350 kPa (50 PSIG), then adjusting upward to 410 kPa (60 PSIG). Tighten the lock knob against the bonnet to lock the pressure setting.

Maintenance Procedures

1. Before assembly, shut off the valve that is supplying air to the regulator. This is to prevent air from escaping. It is not necessary to remove the regulator from the airline.

2. Remove the two Screws from the bottom of the unit.

3. Pull out the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.

4. Wipe off any particles that may be attached to rubber Seat Ring in Body.

5. Replace the assembly carefully.

6. Keep the vent hole in the Bonnet clear for proper regulator operation. Lubricate the adjusting screw with Molycote® G.

NOTE: Avoid such solvents as acetone, carbon tetrachloride and trichlorethylene.

171 Series Kits and Accessories

Service Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5" Hg, Nitrile, Nonrelieving</td>
<td>PS20966-1</td>
</tr>
<tr>
<td>0-5" Hg, Fluorocarbon, Nonrelieving</td>
<td>PS20966-2</td>
</tr>
<tr>
<td>0-5" Hg, Nitrile, Relieving</td>
<td>PS20966-3</td>
</tr>
<tr>
<td>0-5" Hg, Fluorocarbon, Relieving</td>
<td>PS20966-4</td>
</tr>
<tr>
<td>0-15" Hg, Nitrile, Nonrelieving</td>
<td>PS20966-5</td>
</tr>
<tr>
<td>0-15" Hg, Fluorocarbon, Nonrelieving</td>
<td>PS20966-6</td>
</tr>
<tr>
<td>0-15" Hg, Nitrile, Relieving</td>
<td>PS20966-7</td>
</tr>
<tr>
<td>0-15" Hg, Fluorocarbon, Relieving</td>
<td>PS20966-8</td>
</tr>
<tr>
<td>0-30" Hg, Nitrile, Nonrelieving</td>
<td>PS20966-9</td>
</tr>
<tr>
<td>0-30" Hg, Fluorocarbon, Nonrelieving</td>
<td>PS20966-10</td>
</tr>
<tr>
<td>0-30" Hg, Nitrile, Relieving</td>
<td>PS20966-11</td>
</tr>
<tr>
<td>0-30" Hg, Fluorocarbon, Relieving</td>
<td>PS20966-12</td>
</tr>
</tbody>
</table>

Wall Mounting Bracket .. PS09921
Tamperproof Resistant Kit PS20967-1
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.

Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.

Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.

Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.

Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.

Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 208 Series can be mounted in any position without affecting its operation. It can be mounted to a flat surface using Mounting Bracket PS09921. For more information, see mounting bracket dimensions.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled on the underside of the booster with the arrows pointing in the direction of the flow. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster and cause a pressure drop down stream. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 208 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 208 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the two Screws from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. Wipe off any particles that may be attached to rubber Seat Assembly.
5. Replace the assembly carefully. For more information, see Figure 1.
Operating Principles
The 208 Series Input Signal Amplifier is a pneumatic device capable of high flow and exhaust capacity. This device uses a force balance system to control the movement of the Supply and Exhaust Valves.

At set point, the force due to signal pressure that acts on the top of the Upper Diaphragm balances with the force due to output pressure acting on the bottom of the Lower Diaphragm. See Figure 1.

Materials of Construction

Body and Housing .. Aluminum
Diaphragm .. Nitrile on Dacron Fabric
Trim ... Zinc Plated Steel, Brass

Functional Specifications

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Signal/Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1/4" (.64 cm)</td>
</tr>
<tr>
<td>1:2</td>
<td>1/2" (.127 cm)</td>
</tr>
<tr>
<td>1:3</td>
<td>3/32" (.94 cm)</td>
</tr>
<tr>
<td>1:4</td>
<td>1/4" (.127 cm)</td>
</tr>
<tr>
<td>1:5</td>
<td>5/32" (.156 cm)</td>
</tr>
<tr>
<td>1:6</td>
<td>3/32" (.160 cm)</td>
</tr>
<tr>
<td>1:7</td>
<td>7/32" (.222 cm)</td>
</tr>
<tr>
<td>1:8</td>
<td>1/4" (.127 cm)</td>
</tr>
</tbody>
</table>

Performance Specifications

<table>
<thead>
<tr>
<th>Sensitivity (Water Column)</th>
<th>1/4" (.64 cm)</th>
<th>1/2" (.127 cm)</th>
<th>3/32" (.94 cm)</th>
<th>1" (.254 cm)</th>
<th>1-1/4" (.318 cm)</th>
<th>1-1/2" (.381 cm)</th>
<th>1/2" (.127 cm)</th>
<th>1/2" (.191 cm)</th>
<th>3/4" (.191 cm)</th>
<th>1/2" (.191 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio Accuracy</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>% of Output Span with (7.0 bar)</td>
<td>100%</td>
</tr>
<tr>
<td>% of Output Span with (7.0 bar)</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Supply Pressure Effect</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Performance Specifications

Ratio Accuracy	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
% of Output Span with (7.0 bar)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Supply Pressure Effect	0.10	0.20	0.30	0.40	0.50	0.60	0.10	0.10	0.10	0.10
Ambient Temperature	-40° to 200°						-40° to 200°			

Hazardous Locations
Acceptable for use in Zones 1 and 2 for gas atmosphere; Groups II A and II B and Zones 21 and 22 for dust atmospheres.
Introduction
Follow these instructions when installing, operating, or servicing this product.

General Information
The 45 Series can be mounted in any position without affecting its operation.

Clean all pipelines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do Not use PTFE tape as a sealant. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the booster. Install the booster in the air line.

The inlet and outlet ports are labeled “IN” and “OUT”. Tighten connections securely. Avoid undersized fittings that will limit the flow through the booster. For more information, see Figure 1.

Note: Oil free air must be applied to the booster. Use a filter to remove dirt and entrained liquid in the air line ahead of the booster. If an air line lubricator is used, it MUST be located downstream of the booster, to avoid interference with booster performance.

Operation
The 45 Series reproduces a pneumatic signal in a 1:1 ratio or in multiplying or dividing ratios. \(P_o = P_s \times R \); where \(P_o \) is output pressure, \(P_s \) is signal pressure, \(R \) is ratio.

Maintenance
To clean the 45 Series, use the following procedure:
1. Before disassembly, shut off the valve that is supplying air to the booster. This is to prevent air from escaping. It is not necessary to remove the booster from the air line.
2. Remove the four Screws and four Washers from the bottom of the unit.
3. Remove the Inner Valve Assembly. Wash the Seat on the Inner Valve Assembly carefully.
4. To clean the 45 Series, use the following procedure:
5. Replace the assembly carefully. Ensure that the Vent in the exterior part of the Inner Valve Assembly and the Exhaust Vents in the Spacer Ring are clear. For more information, see Figure 1.

CAUTION
EXCEPT as otherwise specified by the manufacturer, this product is specifically designed for compressed air service only, and use with any other fluid (liquid or gas) is a misapplication. For example, use with or injection of certain hazardous liquid or gases in the system (such as alcohol or liquid petroleum gas) could be harmful to the unit or result in a combustible condition or hazardous external leakage. Manufacturer’s warranties are void in the event of misapplication, and manufacturer assumes no responsibility for any resulting loss.

The relief flow capacity of relieving type regulators is limited. Under some operating conditions, the secondary (outlet) pressure could increase above the initial setting. If overpressure conditions could cause malfunctions or failure of downstream equipment, additional external pressure relief devices of suitable capacity must be installed.

Before using with fluids other than air, or for nonindustrial applications, or for life support systems, consult manufacturer for written approval.

WARNING
To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

PRODUCT Rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

Safety Guide
For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the Pneumatic Division Safety Guide at: www.parker.com/safety

WARNING
Failure or improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MATERIALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
Operating Principles

When signal pressure on the top of the Signal Diaphragm creates a downward force on the Diaphragm Assembly, the Supply Valve opens. Output pressure flows through the Outlet Port and the Aspirator Tube to the Control Chamber to create an upward force on the bottom of the Control Diaphragm. When the setpoint is reached, the force of the signal pressure that acts on the top of the Signal Diaphragm balances with the force of the output pressure that acts on the bottom of the Control Diaphragm to close the Supply Valve.

When the output pressure increases above the signal pressure, the Diaphragm Assembly moves upward to close the Supply Valve and open the Exhaust Valve. Because the Poppet Valve is closed, pressure flows down the Connecting Tube to the bottom of the Motor Diaphragm. This pressure keeps the Supply Valve tightly closed while in the exhaust mode. The Poppet Valve opens and excess output pressure exhausts through the vent in the side of the unit until it reaches the setpoint. For more information, see Figure 2.

Figure 1.

Figure 2.

Functional Specifications

<table>
<thead>
<tr>
<th>Ratio</th>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>2:1</th>
<th>3:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Output Pressure (PSI)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Output Pressure (bar)</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Flow Capacity SCFM, (m³/HR)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Exhaust Capacity SCFM, (m³/HR)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Performance Specifications

<table>
<thead>
<tr>
<th>Sensitivity (Water Column)</th>
<th>in. (cm)</th>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in. (2.54)</td>
<td>1 in. (2.54)</td>
<td>1 in. (2.54)</td>
<td>1 in. (2.54)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio Accuracy</th>
<th>% of 100 PSI (7.0 bar) Output Span</th>
<th>% of Output Span with 100 PSI (7.0 bar) Input Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply Pressure Effect</th>
<th>PSI (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for change of 100 PSI (7.0 bar)</td>
<td>0.10 (.007)</td>
</tr>
</tbody>
</table>

Materials of Construction

- Body and Housing: Aluminum Diaphragm: Nitrile on Dacron Fabric Trim: Zinc Plated Steel, Brass

45 Series Kits and Accessories

<table>
<thead>
<tr>
<th>Service Kits</th>
<th>PS19549-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 Ratio</td>
<td>PS19549-1</td>
</tr>
<tr>
<td>1:1 Ratio w/ Tapped Exhaust</td>
<td>PS19549-1E</td>
</tr>
<tr>
<td>1:1 Ratio Fluorocarbon Service Kit</td>
<td>PS19549-1J</td>
</tr>
<tr>
<td>1:1 Ratio Service Kit</td>
<td>PS19549-5</td>
</tr>
<tr>
<td>1:3 Ratio</td>
<td>PS19549-3</td>
</tr>
<tr>
<td>2:1 Ratio</td>
<td>PS19549-4</td>
</tr>
<tr>
<td>2:1 Ratio w/ Tapped Exhaust</td>
<td>PS19549-4E</td>
</tr>
<tr>
<td>1:2 Ratio</td>
<td>PS19549-2</td>
</tr>
<tr>
<td>1:1 w/ Tapped Exhaust, I Option</td>
<td>PS19549-20E</td>
</tr>
</tbody>
</table>

Dimensions
102BP Series

Installation & Service Instructions

2R410

Pneumatic Division
Richland, Michigan 49083
269-629-5000

Specifications

<table>
<thead>
<tr>
<th>Set Point Range</th>
<th>System Pressure (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-200 PSIG</td>
<td>300 PSIG</td>
</tr>
<tr>
<td>(0.15-14 bar)</td>
<td>(21.0 bar)</td>
</tr>
<tr>
<td>(15-1400 kPa)</td>
<td>(2100 kPa)</td>
</tr>
<tr>
<td>300-400 PSIG</td>
<td>500 PSIG</td>
</tr>
<tr>
<td>(21-28 bar)</td>
<td>(35.0 bar)</td>
</tr>
<tr>
<td>(2100-2800 kPa)</td>
<td>(3500 kPa)</td>
</tr>
</tbody>
</table>

Flow Capacity – 40 SCFM (68 m³/HR) @ 100 PSIG, (7.0 bar), (700 kPa) Supply and 20 PSIG, (1.5 bar), (150 kPa) Setpoint

Exhaust Capacity – 5.5 SCFM (9.3 m³/HR) where Downstream Pressure is 5 PSIG, (.35 bar), (35 kPa) above 20 PSIG, (1.5 bar), (150 kPa) Setpoint

Supply Pressure Effect – Less than 0.1 PSIG, (.007 bar), (.7 kPa) for 100 PSIG, (7.0 bar), (700 kPa) change in Supply Pressure

Sensitivity..less than 1/8" (.32 cm) Water Column

Ambient Temperature-40°F to +200°F, (-40°C to 93.3°C)

ATEX Hazardous Locations – Acceptable for use in Zones 1 and 2 for Gas Atmosphere: Groups IIA and IIB and Zones 21 and 22 for Dust Atmospheres

Materials of Construction

Body and Housing ..Aluminum

Diaphragms..Buna N on Dacron (Standard Unit Only)

Trim...Brass, Zinc Plated Steel

Symbol

Installation

Clean all pipe lines to remove dirt and scale before installation. Apply a minimum amount of pipe compound to the male threads of the fitting only. Do not use PTFE tape to seal the threads. Start with the third thread back and work away from the end of the fitting to avoid the possibility of contaminating the regulator. Install the regulator in the airline. The inlet and outlet connections are labeled on the underside of the regulator with the arrows pointing in the direction of the flow. Tighten connections

WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

WARNING

Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed maximum primary pressure rating.

CAUTION

EXCEPT as otherwise specified by the manufacturer, this product is specifically designed for compressed air service only, and use with any other fluid (liquid or gas) is a misapplication. For example, use with or injection of certain hazardous liquid or gases in the system (such as alcohol or liquid petroleum gas) could be harmful to the unit or result in a combustible condition or hazardous external leakage. Manufacturer’s warranties are void in the event of misapplication, and manufacturer assumes no responsibility for any resulting loss.

The relief flow capacity of relieving type regulators is limited. Under some operating conditions, the secondary (outlet) pressure could increase above the initial setting. If overpressure conditions could cause malfunctions or failure of downstream equipment, additional external pressure relief devices of suitable capacity must be installed.

Before using with fluids other than air, or for nonindustrial applications, or for life support systems, consult manufacturer for written approval.

Introduction

Follow these instructions when installing, operating, or servicing this product.

General Information

The 102BP Series regulator is designed for applications that require high capacity and accurate process control. A poppet valve which is balanced by utilizing a rolling diaphragm, insures a constant output pressure even during wide supply pressure variations. Stability of regulated pressure is maintained under varying flow conditions through the use of an aspirator tube which adjusts the air supply in accordance with the flow velocity.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the Pneumatic Division Safety Guide at: www.parker.com/safety

Plug IN YOUR LOCAL REPRESENTATIVE.
The 102BP Series Standard Precision Regulator

102BP Series Standard Precision Regulator

Service (Figure 2)
1. Turn the control knob (1) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.
2. Remove two #10-32 screws (15) on the bottom of the regulator body (10) releasing the retaining cap (13). Pull out the cylinder assembly (16) and screen (12). Discard cylinder assembly and screen.
3. Remove six screws (5) holding the bonnet (2) in place. Remove bonnet, spring seat (3), spring (4) and diaphragm assembly (6). Discard diaphragm assembly.
4. Remove the four screws (9) holding the seal plate and jet tube assembly (7) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove the cork seal plate gasket (17) and discard.
5. Tap the seat ring (11) out of the bottom side of the regulator body (10) using a wooden dowel. Discard seat ring.
6. Clean all retained parts with mild soap and water.
7. Insert the new seat ring (11) into the body making sure the brass side enters first. Press into place being careful not to damage the rubber seat. Note: a small amount of silicone grease applied to the outside of the seat ring is advised for easy assembly.
8. Assemble the new seal plate gasket (8) and seal plate (7), making sure the jet tube is positioned into the outlet port of the regulator. Insert and tighten the four retaining screws (9).
9. Insert the new cylinder assembly (16) making sure the screen (12) is centrally located in the groove on the top side of the valve body. Replace the retaining cap (13), and securely tighten using the two #10-32 screws (15).
10. Place the new diaphragm assembly (6) over the valve stem and pilot bushing. Align the screw holes in the diaphragm with those in the regulator body (10). Place the main spring (4) and spring seat (3) into position on top of the diaphragm assembly.
11. Place the bonnet (3) into position over the spring seat (3) and reassemble the six screws (5). Tighten screws in progressive steps using a crisscross pattern.
12. Admit inlet pressure and turn the adjusting knob to obtain the desired pressure.

NOTE: Keep the vent hole in the Bonnet clear for proper regulator operation. Lubricate the adjusting screw with Molycote "G".

Operating Principles
The 102BP Series regulator uses the force balance principal to control the movement of the Valve Assembly that controls the output pressure. When the regulator is adjusted for a specific set point, the downward force of the Positive Bias Spring moves the Diaphragm Assembly downward. The Supply Valve opens and allows air to pass to the Outlet Port. As the set point is reached, the downward force exerted by the Positive Bias Spring is balanced by the force of the downstream pressure that acts on the Diaphragm Assembly. The resultant force moves the Supply Valve upward to reduce the flow of air to the Outlet Port. Outlet pressure is maintained as a result of balance between forces acting on the top and bottom of the Diaphragm Assembly.

NOTE: Oil free air must be applied to the regulator. Use a filter to remove dirt and entrained liquid in the airline ahead of the regulator. If an airline lubricator is used, it MUST be located downstream of the regulator, to avoid interference with regulator performance.
Installation & Service Instructions
83-528-000-80
Dial Regulators
ISSUED: May, 2012
Supersedes: March, 2011
Doc.# 83-528-000-80, EN# 120233, Rev. 4

WARNING
To avoid unpredictable system behavior that can cause personal injury and property damage:

• Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
• Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
• Operate within the manufacturer’s specified pressure, temperature, and other conditions listed in these instructions.
• Medium must be moisture-free if ambient temperature is below freezing.
• Service according to procedures listed in these instructions.
• Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
• After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
• Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

Introduction
Follow these instructions when installing, operating, or servicing the product.
YOU have selected a quality product, and we appreciate it... To be assured of maximum performance and satisfaction please read these instructions before installing this product.

WARNING
Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed maximum primary pressure rating.

Installation Instructions For Dial Regulators
1. DO NOT install the unit until you have read this entire product information sheet.
2. EXCEPT as otherwise specified by manufacturer, this product is specifically designed for compressed air service, and use with any other fluid (liquid or gas) is a misapplication. For example, use with or injection of certain hazardous liquids or gases in the system (such as alcohol or liquid petroleum gas) could be harmful to unit or result in a combustible condition or hazardous external leakage. Manufacturer’s warranties are void in the event of misapplication and manufacturer assumes no responsibility for any resulting loss. Maximum pressure rating is 300 psig (21 bar). Temperature range is 32°F to 150°F (0°C to 65.5°C).
3. INSTALL upstream of and as close as possible to where regulated air is needed.
4. INSTALL with air flow in direction of arrow on casting.
5. DO NOT restrict the air flow with undersize piping or fittings, unless maximum air flow is not needed.
6. INSTALL regulator in any rotational position.

7. GAUGE PORTS may be used for installing gauge or they may be used as additional regulated air outlet ports. Plug all unused ports.
8. PANEL MOUNTING requires a 2-11/16” (69 mm) diameter hole, and 4 7/32” (5.5 mm) screw holes. Unit can be mounted on material up to 1-1/4” (32 mm) thick.
9. INSTALLATION of a 5-micron rated filter upstream of regulator is recommended.
10. TO REGULATE AIR turn adjustment knob clockwise to raise the regulated air pressure and counterclockwise to lower the regulated air pressure.

Maintenance Instructions For Dial Regulators
1. BEFORE SERVICING THIS UNIT, READ THIS ENTIRE PRODUCT INFORMATION SHEET AND TURN OFF AIR SUPPLY AND VENT BOTH SIDES OF REGULATOR.

Lubrication Of Dial Regulators
1. FOR TROUBLE-FREE OPERATION, proper lubrication of the Dial regulator is essential.
2. WHEN ANY of the following symptoms occur, lubricate regulator with CHRISTO-LUBE® MCG 111. (See note) If CHRISTO-LUBE® MCG 111 is not available, use a heavy grease such as MAGNALUBE®-G, Lubriplate or Molykote®. NOTE: Never use oil as a lubricant.
 A. Excessive relief venting.
 B. Inability to attain high secondary pressure.
 C. Erratic secondary pressures.
 D. Excessive hysteresis (a retardation of desired effect: in this case because of the lack of lubrication).
3. Refer to “Figure A” on page 2 for steps 1 thru 10.
 1. Remove bottom plug (1), main valve spring (2), main valve (3), pilot valve spring (4), and pilot valve (5).
 2. Clean main valve molded rubber seat (Do not lubricate).
 3. Clean and lubricate bottom plug seal, main valve seal and pilot valve seal.

WARNING
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.
This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
Recalibration Of Dial Regulators

1. **DO NOT ATTEMPT TO CALIBRATE UNIT UNTIL ALL EIGHT SEALS HAVE BEEN PROPERLY LUBRICATED.**

2. **TO RECALIBRATE DIAL REGULATOR:**
 A. **INSTALL** regulator on air line with at least 110 psig (7.5 bar) air pressure at the inlet port.
 B. **INSTALL** an air pressure gauge to one of the gauge ports. Plug remaining gauge port with plug (supplied).
 C. **REMOVE** lock button (Figure A, Item 14) from unit.
 D. **TURN** adjusting knob to 100 psi (7 bar) setting.
 E. **CHECK** the gauge for 100 psig (7 bar) reading. If gauge reads other than 100 psig (7 bar) adjust screw “A” (Fig. B) with a screw driver while holding adjusting knob on 100 psi (7 bar) setting. If more than one-half turn of screw “A” is required to achieve 100 psig (7 bar), see “G” below.
 F. **TO CHECK CALIBRATION ADJUSTMENT:** when dial and gauge are reading the same (100 psig ± 2 psig; 7 bar ± 0.14 bar), turn adjusting knob to 20 psi (1.4 bar). Unit is calibrated when gauge reads 20 psig ± 5 psig (1.4 bar ± 0.34). (The ± 2 psig and ± 5 psig are accepted tolerances of the most commonly used gauges.)
 G. **DO NOT** adjust screw “A” more than one-half turn when calibrating unit. If unit has been properly lubricated and more than one-half turn is required to calibrate it, additional problems with unit are involved and unit should be returned to the vendor.

IMPORTANT NOTE: As with any new product, everyone seems to have an urge to see how it works. All Dial regulators have been factory calibrated. Any “tinkering” with calibration settings easily can throw the unit out of calibration. For example, removing dial screw “B” and rotating “C” in either direction so that tip “D” passes the dial screw “B” will throw unit out of calibration.

### Nominal Body Size	Kits	Part Number
Adjustment Dial Knob | RRP-16-024-80
O-ring Repair Kit | GRP-95-260-80
Piston and Bonnet Repair Kit | RRP-95-765-80
Spring, Regulation, Belleville Washer 2-40 psig | RRP-95-906-80
Spring, Regulation, Belleville Washer 3-60 psig | RRP-95-907-80
Spring, Regulation, Belleville Washer 5-160 psig | RRP-95-905-80
Tamper Resistant Kit | RRP-95-585-80
Valve, Pilot with O-ring and Valve Spring | RRP-96-934-80
Adjustment Dial Knob | RRP-16-024-80
O-ring Repair Kit | GRP-95-260-80
Piston and Bonnet Repair Kit | RRP-95-766-80
Spring, Regulation, Belleville Washer 2-40 psig | RRP-95-906-80
Spring, Regulation, Belleville Washer 3-60 psig | RRP-95-907-80
Spring, Regulation, Belleville Washer 5-160 psig | RRP-95-905-80
Tamper Resistant Kit | RRP-95-585-80
Valve, Main with U-Cup Seal | RRP-95-585-80
Valve, Pilot with O-ring and Valve Spring | RRP-96-934-80
WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Disconnect electrical supply before installation, servicing or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed on these instructions.
- Installation, service and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air supplies should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

APPLICATION LIMITS

These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range:

<table>
<thead>
<tr>
<th>Primary:</th>
<th>PSIG</th>
<th>BAR</th>
<th>kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>500</td>
<td>34.48</td>
<td>3448</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary:</th>
<th>Pressure Range:</th>
<th>PSIG</th>
<th>BAR</th>
<th>kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring:</td>
<td>Minimum</td>
<td>0.5</td>
<td>0.03</td>
<td>3.4</td>
</tr>
<tr>
<td>30 PSIG</td>
<td>Maximum</td>
<td>30</td>
<td>20.70</td>
<td>207</td>
</tr>
<tr>
<td>60 PSIG</td>
<td>Minimum</td>
<td>1</td>
<td>0.07</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>60</td>
<td>4.14</td>
<td>414</td>
</tr>
<tr>
<td>150 PSIG</td>
<td>Minimum</td>
<td>2</td>
<td>0.14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>150</td>
<td>10.34</td>
<td>1034</td>
</tr>
</tbody>
</table>

Operating Temperature Range: -40°F (-40°C) to 200°F (93°C)

* Temperatures below 32°F (0°C) require moisture free air.

OPERATION

With the adjusting knob turned fully counterclockwise (no spring load), and pressure supplied to the regulator inlet port, the valve poppet assembly (A) is closed. Turning the adjusting knob clockwise applies a load to control spring (C). This load causes the diaphragm (B) and the valve poppet assembly (A) to move downward allowing flow across the seat area (E) created between the poppet assembly and the seat. Pressure in the downstream line is sensed below the diaphragm (B) and offsets the load of spring (C). As downstream pressure rises, poppet assembly (A) and the diaphragm (B) move upward until the area (E) is closed and the load of the spring (C) and pressure under the diaphragm (B) are in balance. A reduced outlet pressure has now been obtained, depending on spring load. Creating a demand downstream, such as opening a valve, results in a reduced pressure under the diaphragm (B). The load of control spring (C) now causes the poppet assembly to move downward opening seat area (E) allowing air to flow to meet the downstream demand. The flow of downstream air is metered by the amount of opening (E).

Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (B) to move upward against control spring (C), open vent hold (D), and vent the excess pressure to atmosphere through the hole in the bonnet (F). (This occurs in the relieving type regulator only.)

REGULATOR PRESSURE ADJUSTMENT - The working range of the knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design.

REGULATOR SPRING CONVERSION

Turn the control knob (A) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.

1. Remove (6) screws (B), bonnet (C) spring (D) and spring seat (E).
2. Place the spring (C) and spring seat (E) into position over the diaphragm assembly.
3. Place the bonnet (C) into position over the spring seat (E) and reassemble the (6) screws (B). Tighten screws to (xx-xx in-lb) in progressive steps using a crisscross pattern.
1. Turn the control knob (A) fully counterclockwise. Remove upstream air supply. Remove downstream air also for non-relieving type regulators.
2. Remove two #10-32 screws (B) on the bottom of the regulator body (R) releasing the retaining plate (C) and cap (D). Pull out the inner valve assembly (E) and screen (F). Discard inner valve assembly and screen.
3. Remove six screws (G) holding the bonnet (H) in place. Remove bonnet, spring cap (J), spring (K) and diaphragm assembly (L). Discard diaphragm assembly.
4. Remove the four screws (M) holding the seal plate and jet tube assembly (N) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove the cork seal plate gasket (P) and discard.
5. Tap the seat ring (Q) out of the bottom side of the regulator body (R) using a wooden dowel. Discard seat ring.
6. Clean all retained parts with mild soap and water.
7. Insert the new seat ring (Q) into the body making sure the brass side enters first. Press into place being careful not to damage the rubber seat. Note: a small amount of silicone grease applied to the outside of the seat ring is advised for easy assembly.
8. Assemble the new cork gasket (P) and jet tube assembly (N), making sure the jet tube is positioned into the outlet port of the regulator. Insert and tighten the four retaining screws (M).
9. Insert the new inner valve assembly (E) making sure the screen (F) is centrally located in the groove on the top side of the valve body. Replace the retaining plate (C) and cap (D), and securely tighten using the two #10-32 screws (B).
10. Place the new diaphragm assembly (L) over the valve stem and pilot bushing. Align the screw holes in the diaphragm with those in the regulator body (R). Place the main spring (K) and spring cap (L) into position on top of the diaphragm assembly.
11. Place the bonnet (H) into position over the spring seat (J) and reassemble the (6) screws (G). Tighten screws in progressive steps using a crisscross pattern.
12. Admit inlet pressure and turn the adjusting knob to obtain the desired pressure.

NOTE: A slight flow of air through the bonnet vent hole is necessary for proper operation of the regulator.

Service Kits / Accessories

Relieving Service Kit	03550 8000
Non-Relieving Service Kit	03550 8009
Control Springs (Color)	
0.5-30 PSIG (Red)	03550 7101
1-60 PSIG (Blue)	03550 7116
2-150 PSIG (Green)	03550 7117
Gauges	
0-30 PSIG	03560 0030
0-60 PSIG	03560 0100
0-160 PSIG	03560 0200
Mounting Brackets	
Pipe Mounting	00902 0400
Right Angle Mounting	03550 0400

WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure, and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.
Installation:
1. Regulator should be installed with reasonable accessibility for service whenever possible — repair service kits are available. Keep pipe or tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe — never into the female port. Do not use PTFE tape to seal pipe joints — pieces have a tendency to break off and lodge inside the unit, possibly causing malfunction.
2. Install regulator so that air flows from "IN" to "OUT" as marked on the regulator. Installation must be upstream from devices it is to service (lubricator, valve, cylinder or tool), and mounted closely to these devices. Mounting may be in any position.
3. Gauge ports are located on both sides of the regulator body for your convenience. It is necessary to install a gauge or pipe plug into each port during installation.
4. Remove plastic plug from vent hole in bonnet.
5. For protection against rust, pipe scale and other foreign matter, install a filter on the upstream (high pressure) side as closely to the regulator as possible.

ANSI Symbols

Service Kits / Accessories:

<table>
<thead>
<tr>
<th>Relieving Service Kit</th>
<th>RKR230E*</th>
<th>RKR230B*</th>
<th>RKR230C*</th>
<th>RKR230D*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 PSIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-30 PSIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-60 PSIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-150 PSIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mounting Brackets
- Pipe Mounting: SA200XW57
- Right Angle Mounting: 446-707-025

* Parts in Kit.

WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.
High Flow Precision Regulator

Operation

1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the control spring. Then turn on air supply and adjust regulator to desired secondary pressure by turning adjusting knob clockwise. This permits pressure to build up slowly, preventing any unexpected operation of the valve, cylinders, tools, etc., attached to the line. Adjustment to desired secondary pressure can be made only with primary pressure applied to the regulator.

2. To decrease regulator pressure setting, always reset from a pressure lower than the final setting desired. For example, lowering the secondary pressure from 5.5 to 4.1 bar (80 to 60 PSIG) is best accomplished by dropping the secondary pressure to 3.5 bar (50 PSIG), then adjusting upward to 4.1 bar (60 PSIG).

CAUTION
REGULATOR PRESSURE ADJUSTMENT - The working range of the knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design.

Service: (Always vent all air pressure before servicing)

1. Turn the control knob (A) fully counterclockwise. Remove upstream air supply.
2. Remove two #10-32 screws (R) on the bottom of the regulator body (K) releasing the seal (P) and cap (Q). Pull out the inner valve assembly (N) and screen (M). Discard inner valve assembly and clean screen with mild soap and water.
3. Remove six screws (B) holding the bonnet (C) in place. Remove bonnet, spring cap (D), spring (E) and diaphragm assembly (F). Discard diaphragm assembly.
4. Remove the seal plate and jet tube assembly (G) and carefully lift out the assembly taking precautions not to bend the jet tube. Remove o-ring (H) and inner valve guide (J).
5. Clean all retained parts with mild soap and water.
6. Assemble the o-ring (H) and inner valve guide (J).
7. Place the new diaphragm assembly (F) over the valve stem and pilot bushing. Align the screw holes in the diaphragm with those in the regulator body (K). Place the main spring (E) and spring cap (D) into position on top of the diaphragm assembly.
8. Insert the new inner valve assembly (N) making sure the screen (M) is centrally located in the groove on the top side of the valve body. Replace the seal (P) and cap (Q), and securely tighten using the two #10-32 screws (R) torque 3.2 to 3.6 Nm (28 to 32 in-lbs).
9. Place the bonnet (C) into position over the spring cap (D) and reassemble the (6) screws (B). Tighten screws 3.2 to 3.6 Nm (28 to 32 in-lbs) in progressive steps using a crisscross pattern.
10. Admit inlet pressure and turn the adjusting knob (A) to obtain the desired pressure.

NOTE: A slight flow of air through the bonnet vent hole is necessary for proper operation of the regulator.
Precision Regulators Application Guide

Pneumatic pressure regulators are designed to provide a constant pressure output from a fluctuating supply pressure - much the way an electronic voltage regulator works. Pressure regulators provide varying degrees of accuracy with regard to their reduced pressure output. General Purpose pressure regulators work for most fluid power applications. However, for more pressure-critical applications precision regulators can provide the customer with the control they need.

A partial listing of things that can potentially cause regulator output pressure variation are:

- Temperature changes
- Inlet pressure changes
- Variations in flow
- Excess downstream pressure
- Cycling
- Time
- Leakage

Who needs precision regulators?

Design level applications:
When designing a pneumatic system it is important to determine not only the air flow that the application will require but also the acceptable level of pressure variation. Some pneumatic applications cannot tolerate fluctuations in pressure. These applications can include static situations with only a steady pressure maintained, or dynamic flow situations involving any number of changing variables in play while trying to maintain a constant pressure.

Problem solving device for existing applications:
Sometimes an existing pneumatic application does not meet the customer’s needs with regards to pressure control and/or stability. Any or all of the variables listed above can cause issues with pressure stability. As applications are expanded, added on to, or modified the pressure and flow requirements can change.

How do precision regulators differ from general purpose pneumatic regulators?

<table>
<thead>
<tr>
<th>Examples</th>
<th>High Precision Regulators R210, R220, R230</th>
<th>Precision Regulators 27R, R216</th>
<th>General Purpose Regulators 06R, 07R, R119, R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity: Reduced pressure repeatability/variation under no-flow condition</td>
<td>.005 to .010 PSIG (1/8” to 1/4” of water column)</td>
<td>.5 to 1 PSIG</td>
<td>2 to 4 PSIG</td>
</tr>
<tr>
<td>Regulator’s ability to control backpressure accurately: *key for cylinder applications</td>
<td>Begins to relieve at .005 to .010 PSIG overpressure</td>
<td>Begins to relieve at .5 to 2 PSIG overpressure</td>
<td>Begins to relieve at 5 to 10 PSIG overpressure</td>
</tr>
<tr>
<td>Regulator’s ability to maintain set pressure under varying flow, input pressure, temperature conditions:</td>
<td>High</td>
<td>Medium</td>
<td>Standard</td>
</tr>
<tr>
<td>Constant Bleed - does the regulator constantly bleed a small volume of air to the atmosphere to maintain stability?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Application Chart

Original Equipment Manufacturers (OEMs)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Gauging</td>
<td>Manufacturers of Air Gauging Equipment.</td>
</tr>
<tr>
<td>Anesthesia Equipment</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Calibration Stands</td>
<td>Similar to Test Stands</td>
</tr>
<tr>
<td>Clamping Pressure Control</td>
<td>End Effect Grippers, Roll Loading</td>
</tr>
<tr>
<td>Control Panels</td>
<td>Manufacturers and Users</td>
</tr>
<tr>
<td>Coordinate Measuring Machines</td>
<td>Manufacturers use in Force Counterbalance Applications in Z-axis</td>
</tr>
<tr>
<td>Dispensing Equipment</td>
<td>Adhesive, Paint, or any other form of Liquid or Gas</td>
</tr>
<tr>
<td>Food Process Machinery</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Gas Analyzers</td>
<td>Used for Reference and Calibration Air Pressures</td>
</tr>
<tr>
<td>Ink or Paint Robotics Spraying Systems</td>
<td>Manufacturers use to Maintain an Even Pressure on System</td>
</tr>
<tr>
<td>Leak Testing Equipment</td>
<td>Manufacturers of Equipment that Detects Leaks (i.e., Plastic Bottles)</td>
</tr>
<tr>
<td>Medical Equipment</td>
<td>Manufacturers that Utilize for Blood Processing and Sampling as Examples</td>
</tr>
<tr>
<td>Oxygen Ventilators</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Pharmaceutical Process Machinery</td>
<td>Pill or Tablet Making Machines</td>
</tr>
<tr>
<td>Phone Cable Pressurization Systems</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Polishing Machinery</td>
<td>Used to Maintain Even Pressure on Polishing Head</td>
</tr>
<tr>
<td>Semi-conductor Manufacturing Machinery</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Smoke Stack Analyzers</td>
<td>Used for Reference and Calibration Air Pressures</td>
</tr>
<tr>
<td>Soil or Environmental Analysis Equipment</td>
<td>Used for Reference and Calibration Air Pressures</td>
</tr>
<tr>
<td>Tank Blanketing</td>
<td>Maintain Pressure on Top Level of a Tank or Storage Vessel</td>
</tr>
<tr>
<td>Test Equipment</td>
<td>Similar to Test Stands</td>
</tr>
<tr>
<td>Test Stands</td>
<td>Manufacturers of Test Stands, Laboratory Test Stands, Engineering Test Stands</td>
</tr>
<tr>
<td>Tool Balancers</td>
<td>Manufacturers of Tool Balancers, Manipulators, and Articulating Arms use High Relief Capacity Precision Regulators in a Force-balancing Application. Used as part of a Pneumatic Counter-balance System, the Regulator helps suspend the tool in the air and then makes it easy to move out of the way when not in use.</td>
</tr>
</tbody>
</table>

System Integrators

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation Integrators</td>
<td>Anyone Involved in Designs or Projects that Automate Processes</td>
</tr>
</tbody>
</table>

Energy Controls Systems

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>Anyone who would be involved in Designs that would include Damper and Louvre Control for HVAC Applications</td>
</tr>
</tbody>
</table>

End Users

<table>
<thead>
<tr>
<th>Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentation Supervisors</td>
<td></td>
</tr>
<tr>
<td>Instrumentation Technicians</td>
<td></td>
</tr>
<tr>
<td>Project Engineers</td>
<td></td>
</tr>
<tr>
<td>Store Room Supervisors</td>
<td></td>
</tr>
</tbody>
</table>

MRO

<table>
<thead>
<tr>
<th>Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>Petrochemical</td>
<td></td>
</tr>
<tr>
<td>Pulp & Paper</td>
<td></td>
</tr>
<tr>
<td>Food & Drug</td>
<td></td>
</tr>
<tr>
<td>Refineries</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td></td>
</tr>
<tr>
<td>Oil & Gas</td>
<td></td>
</tr>
</tbody>
</table>
1. GENERAL INSTRUCTIONS

1.1. Scope: This safety guide is designed to cover general guidelines on the installation, use, and maintenance of Pneumatic Division Valves, FRLs (Filters, Pressure Regulators, and Lubricators), Vacuum products and related accessory components.

1.2. Fail-Safe: Valves, FRLs. Vacuum products and their related components can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of associated valves, FRLs or Vacuum products will not endanger persons or property.

1.4. Distribution: Provide a copy of this safety guide to each person that is responsible for selection, installation, or use of Valves, FRLs or Vacuum products. Do not select, or use Parker valves, FRLs or vacuum products without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the products considered or selected.

1.5. User Responsibility: Due to the wide variety of operating conditions and applications for valves, FRLs, and vacuum products Parker and its distributors do not represent or warrant that any particular valve, FRL or vacuum product is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the appropriate valve, FRL, Vacuum component, or accessory.
- Assuring that all user’s performance, endurance, maintenance, safety, and warning requirements are met and that the application presents no health or safety hazards.
- Complying with all existing warning labels and / or providing all appropriate health and safety warnings on the equipment on which the valves, FRLs or Vacuum products are used; and,
- Assuring compliance with all applicable government and industry standards.

1.6. Safety Devices: Safety devices should not be removed, or defeated.

1.7. Warning Labels: Warning labels should not be removed, painted over or otherwise obscured.

1.8. Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the product being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2. PRODUCT SELECTION INSTRUCTIONS

2.1. Flow Rate: The flow rate requirements of a system are frequently the primary consideration when designing any pneumatic system. System components need to be able to provide adequate flow and pressure for the desired application.

2.2. Pressure Rating: Never exceed the rated pressure of a product. Consult product labeling, Pneumatic Division catalogs or the instruction sheets supplied for maximum pressure ratings.

2.3. Temperature Rating: Never exceed the temperature rating of a product. Excessive heat can shorten the life expectancy of a product and result in complete product failure.

2.4. Environment: Many environmental conditions can affect the integrity and suitability of a product for a given application. Pneumatic Division products are designed for use in general purpose industrial applications. If these products are to be used in unusual circumstances such as direct sunlight and/or corrosive or caustic environments, such use can shorten the useful life and lead to premature failure of a product.

2.5. Lubrication and Compressor Carryover: Some modern synthetic oils can and will attack nitrile seals. If there is any possibility of synthetic oils or greases migrating into the pneumatic components check for compatibility with the seal materials used. Consult the factory or product literature for materials of construction.

2.6. Polycarbonate Bowls and Sight Glasses: To avoid potential polycarbonate bowl failures:
- Do not locate polycarbonate bowls or sight glasses in areas where they could be subject to direct sunlight, impact blow, or temperatures outside of the rated range.
- Do not expose or clean polycarbonate bowls with detergents, chlorinated hydro-carbons, keytones, esters or certain alcohols.
- Do not use polycarbonate bowls or sight glasses in air systems where compressors are lubricated with fire resistant fluids such as phosphate ester and di-ester lubricants.
2.7. Chemical Compatibility: For more information on plastic component chemical compatibility see Pneumatic Division technical bulletins Tec-3, Tec-4, and Tec-5

2.8. Product Rupture: Product rupture can cause death, serious personal injury, and property damage.
- Do not connect pressure regulators or other Pneumatic Division products to bottled gas cylinders.
- Do not exceed the maximum primary pressure rating of any pressure regulator or any system component.
- Consult product labeling or product literature for pressure rating limitations.

3. PRODUCT ASSEMBLY AND INSTALLATION INSTRUCTIONS

3.1. Component Inspection: Prior to assembly or installation a careful examination of the valves, FRLs or vacuum products must be performed. All components must be checked for correct style, size, and catalog number. DO NOT use any component that displays any signs of nonconformance.

3.2. Installation Instructions: Parker published Installation Instructions must be followed for installation of Parker valves, FRLs and vacuum components. These instructions are provided with every Parker valve or FRL sold, or by calling 1-800-CPARKER, or at www.parker.com.

3.3. Air Supply: The air supply or control medium supplied to Valves, FRLs and Vacuum components must be moisture-free if ambient temperature can drop below freezing.

4. VALVE AND FRL MAINTENANCE AND REPLACEMENT INSTRUCTIONS

4.1. Maintenance: Even with proper selection and installation, valve, FRL and vacuum products service life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a component failure, and experience with any known failures in the application or in similar applications should determine the frequency of inspections and the servicing or replacement of Pneumatic Division products so that products are replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.10.

4.2. Installation and Service Instructions: Before attempting to service or replace any worn or damaged parts consult the appropriate Service Bulletin for the valve or FRL in question for the proper procedures to service the unit in question. These Service and Installation Instructions are provided with every Parker valve and FRL sold, or are available by calling 1-800-CPARKER, or by accessing the Parker web site at www.parker.com.

4.4. Visual Inspection: Any of the following conditions requires immediate system shut down and replacement of worn or damaged components:
- Air leakage: Look and listen to see if there are any signs of visual damage to any of the components in the system. Leakage is an indication of worn or damaged components.
- Damaged or degraded components: Look to see if there are any visible signs of wear or component degradation.
- Kinked, crushed, or damaged hoses: Kinked hoses can result in restricted air flow and lead to unpredictable system behavior.
- Any observed improper system or component function: Immediately shut down the system and correct malfunction.
- Excessive dirt build-up: Dirt and clutter can mask potentially hazardous situations.

Caution: Leak detection solutions should be rinsed off after use.

4.5. Routine Maintenance Issues:
- Remove excessive dirt, grime and clutter from work areas.
- Make sure all required guards and shields are in place.

4.6. Functional Test: Before initiating automatic operation, operate the system manually to make sure all required functions operate properly and safely.

4.7. Service or Replacement Intervals: It is the user’s responsibility to establish appropriate service intervals. Valves, FRLs and vacuum products contain components that age, harden, wear, and otherwise deteriorate over time. Environmental conditions can significantly accelerate this process. Valves, FRLs and vacuum components need to be serviced or replaced on routine intervals. Service intervals need to be established based on:
- Previous performance experiences.
- Government and / or industrial standards.
- When failures could result in unacceptable down time, equipment damage or personal injury risk.

4.8. Servicing or Replacing of any Worn or Damaged Parts: To avoid unpredictable system behavior that can cause death, personal injury and property damage:
- Follow all government, state and local safety and servicing practices prior to service including but not limited to all OSHA Lockout Tagout procedures (OSHA Standard – 29 CFR, Part 1910.147, Appendix A, The Control of Hazardous Energy – Lockout / Tagout). Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to system and Pneumatic Division products before installation, service, or conversion.
- Installation, servicing, and / or conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversions air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or if the product does not operate properly, do not put product or system into use.
- Warnings and specifications on the product should not be covered or painted over. If masking is not possible, contact your local representative for replacement labels.

4.9. Putting Serviced System Back into Operation: Follow the guidelines above and all relevant Installation and Maintenance Instructions supplied with the valve FRL or vacuum component to insure proper function of the system.