The standard for durability and efficiency
Combining advanced fiber technology and a unique membrane manufacturing process, Parker Hannifin offers an innovative filter medium that has been proven to deliver superior collection performance in baghouses.

We developed a patented bi-component lamination process for both polyester and acrylic felted filtration fabric. With this lamination technology, the membrane is bonded to a sheath that surrounds the fibers of the filter media rather than a singed fiber. The bonding process is more controlled than conventional bonding methods.

The lamination process creates many more bonds to the fabric, but each one is much smaller in size. The result is a stronger, more durable bond, and a filtration medium that delivers high efficiency with low pressure drops.

Bi-component lamination features
- Thicker and more durable membrane for collection of sub-micron particulate
- Superior dustcake release for more efficient cleaning and lower pressure drops
- Less surface area blocked by lamination bonds means more surface area for filtration
- More than 8 billion pores per square inch
- Greater airflow at lower energy consumption levels
- Extremely high filtration efficiency that virtually eliminates emissions

Acrylic felt benefits
Acrylic felt is a filter medium that has been proven to deliver superior performance in baghouses with high moisture or aggressive chemical environments. Made from homopolymer acrylic, the fabric is rated for temperatures up to 265°F (130°C). Preveil ePTFE membrane on homopolymer/bi-component acrylic felt is resistant to:
- Moist heat / hydrolysis
- Chemically active gas streams
- Mineral acids
- Organic solvents
- Most alkaline environments

BHA Preveil ePTFE Membrane – Fractional Efficiency

<table>
<thead>
<tr>
<th>Size Range (μm)</th>
<th>Fractional Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 - 0.5</td>
<td>99.998</td>
</tr>
<tr>
<td>0.5 - 0.7</td>
<td>100.000</td>
</tr>
<tr>
<td>0.7 - 1.0</td>
<td>100.000</td>
</tr>
<tr>
<td>1.0 - 2.0</td>
<td>100.000</td>
</tr>
<tr>
<td>2.0 - 3.0</td>
<td>100.000</td>
</tr>
<tr>
<td>3.0 - 5.0</td>
<td>100.000</td>
</tr>
<tr>
<td>> 5.0</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Test Conditions:
Air-to Cloth Ratio: 10.5:1 ACFM/ft²
Differential Pressure: 1.10" w.c.
Comparison of Conventional Membrane Lamination with Bi-Component Lamination

Air cannot flow through conventional bond points
Conventional membrane lamination to acrylic media causes large bond points (outlined areas). Air cannot pass through, and collection is reduced at these points.

Bi-component lamination results in lower restriction to airflow
Our bi-component lamination allows for more numerous, yet much smaller bond points (marked by yellow lines), and increased airflow.