Thermal Interface Material Dispensing Guide
For Thermally Conductive GELs, Cure-in-Place Potting Compounds and Greases
Thermal Interface Material Dispensing Guide

Parker Chomerics thermally conductive dispensable products are an ideal solution for today’s electronic packages. Thermally conductive, dispensable materials have the ability to cover a variety of gaps and form complex geometries. This ability to conform provides reduced thermal contact resistances and thus reduces the temperature and increases efficiency of the electronic application, while being low closure force. When using dispensable products, factors such as pump equipment, mating surfaces, tolerance stack up, closure force, and physical application of the material have to be considered.

There are many options for dispensing equipment, ranging from manual syringes, to high volume automated dispensing systems. The choice of the proper equipment will depend on several factors, including volume, labor/equipment cost, precision requirements, and material type to be dispensed. When choosing the appropriate dispensing equipment, designers should keep in mind how the equipment may interact with the material. The material and the delivery system need to be compatible to optimize equipment life and maintain material properties.

To achieve high thermal conductivity, these materials are highly filled with ceramic particles. Due to this high loading, the thermal compounds have higher viscosity and may be abrasive. Therefore, they will dispense differently than common low viscosity grease or adhesive. Once the proper equipment is chosen, certain factors should be considered to increase the quality and through-put of the material and through-put of the material. These factors may include needle/nozzle height, dispensing pattern, dispensing speed, needle diameter, substrate surface finish etc.

The intent of this guide is to aid in the appropriate choice of Chomerics’ thermally conductive dispensable materials, equipment and dispense process.

Overview of Dispensable Materials

THERM-A-GAP™ GELS
T630, T630G, T635, T636, T652, GEL8010, GEL30, & GEL30G

Features / Benefits
- Fully Cured
 - Requires no refrigeration, mixing, or additional curing
 - Proven long-term reliability and superior performance
 - No settling occurs in storage
- Highly Conformable At Low Pressures
 - Ideal for multiple thickness gaps under one common heat sink
 - Applies very low stress on components, which makes it ideal for delicate applications
 - Allows for design flexibility compared to thermal pads
- One Component Dispensable
 - Eliminates hand assembly
 - Decreases installation cost
 - Eliminates multiple pad part sizes/numbers
- Excellent Surface Wetting
 - Excellent for maintaining contact through thermal cycling

Typical Applications
- Automotive electronic control units (ECUs): Engine, Transmission, and Braking/Traction controls
- Power conversion equipment
- Power supplies and uninterruptable power supplies
- Power semiconductors
- MOSFET arrays with common heat sinks
- Televisions and consumer electronics

Storage Conditions
Materials should be stored at 50-90°F at 50% relative humidity.

THERM-A-GAP™ GELS are high performance, fully cured, dispensable, thermal materials. Their one-component, cross-linked structure, provides superior performance and long-term thermal stability with very low closure forces.

These GELS are highly conformable and provide low thermal impedance like greases, but are designed to overcome the pump-out and dry-out issues associated with grease. THERM-A-GAP GELS are designed to be dispensed in applications requiring low compression forces and minimal thermal resistance for maximum thermal performance. They are ideal for filling variable thickness gaps in a single application.
Overview of Dispensable Materials

THERM-A-FORM™ (Cure-In-Place) compounds are thermally conductive silicone elastomer products that are dispensable compounds designed for heat transfer without excessive compressive force in electronics cooling applications. These versatile RTV (room temperature vulcanizing) liquid materials can be dispensed and then cured into complex geometries for cooling of multi-height components on a PCB without the expense of a molded sheet. Each compound is available in ready-to-use cartridge systems, eliminating weighing, mixing, and degassing procedures.

Features and Benefits

Cure-In-Place Dispensable Compound
- Filling, potting, overfill, underfill, sealing, and encapsulating
- Flows around complex parts
- Ideal for multiple thickness gaps under one common heat sink
- Can cure at elevated heat cycle or at room temperature
- Localized encapsulating of components
- Ceramic particles act as natural standoffs for electrical isolation
- Room temperature and elevated cure available

Conformable (Low Modulus)
- Mold to complex irregular shapes without excessive force on components
- Insulates against shock and vibration

Typical Applications

- Power conversion equipment
- Power supplies and uninterruptable power supplies
- LED Modules & Power Drivers
- Telecom Base Stations

Storage Conditions

To maintain uniformity, tubes/cartridges should be stored horizontally. Remixing prior to dispensing is not advised, unless the material can be vacuum degassed, to remove any air bubbles. They should be stored at 50-90°F at 50% relative humidity.

Other Dispensable Thermally Conductive Compounds

Features and Benefits

- Low thermal impedance
- Deflects under minimal compressive forces
- Great surface wetting
- Excellent ability to fill micro-voids

One Component
- Excellent for screening and stenciling
- Requires no cure cycle

Typical Applications

- LED Modules
- Microprocessors (Mobile Servers & Desktops)
- Memory Modules
- DC/DC Converters
- Power Semiconductors
- Telecom Base Stations

Storage Conditions

Material may settle over time in storage. Best practice is to remix the material prior to use. Materials should be stored at 50-90°F at 50% relative humidity.

Features and Benefits

- High thermal transfer
- Excellent surface wetting and flow properties
- Low thermal impedance

One Component
- Excellent for screening and stenciling
- Requires no cure cycle

Typical Applications

- LED Modules
- Microprocessors (Mobile Servers & Desktops)
- Memory Modules
- DC/DC Converters
- Power Semiconductors
- Telecom Base Stations

Storage Conditions

Material may settle over time in storage. Best practice is to remix the material prior to use. Materials should be stored at 50-90°F at 50% relative humidity.

Other Dispensable Thermally Conductive Compounds

Features and Benefits

- High thermal transfer
- Excellent screenability
- Excellent surface wetting and flow properties
- Low thermal impedance

One Component
- Excellent for screening and stenciling
- Requires no cure cycle

Typical Applications

- LED Modules
- Microprocessors (Mobile Servers & Desktops)
- Memory Modules
- DC/DC Converters
- Power Semiconductors
- Telecom Base Stations

Storage Conditions

Material may settle over time in storage. Best practice is to remix the material prior to use. Materials should be stored at 50-90°F at 50% relative humidity.

Overview of Dispensable Materials

THERM-A-FORM™ CURE-IN-PLACE COMPOUNDS

T642, T644, T646, T647, 1641, & 1642

Features and Benefits

- Cure-In-Place Dispensable Compound
- Filling, potting, overfill, underfill, sealing, and encapsulating
- Flows around complex parts
- Ideal for multiple thickness gaps under one common heat sink
- Can cure at elevated heat cycle or at room temperature
- Localized encapsulating of components
- Ceramic particles act as natural standoffs for electrical isolation
- Room temperature and elevated cure available

Conformable (Low Modulus)
- Mold to complex irregular shapes without excessive force on components
- Insulates against shock and vibration

Typical Applications

- Power conversion equipment
- Power supplies and uninterruptable power supplies
- LED Modules & Power Drivers
- Telecom Base Stations

Storage Conditions

To maintain uniformity, tubes/cartridges should be stored horizontally. Remixing prior to dispensing is not advised, unless the material can be vacuum degassed, to remove any air bubbles. They should be stored at 50-90°F at 50% relative humidity.

Other Dispensable Thermally Conductive Compounds

Features and Benefits

- High thermal transfer
- Excellent screenability
- Excellent surface wetting and flow properties
- Low thermal impedance

One Component
- Excellent for screening and stenciling
- Requires no cure cycle

Typical Applications

- LED Modules
- Microprocessors (Mobile Servers & Desktops)
- Memory Modules
- DC/DC Converters
- Power Semiconductors
- Telecom Base Stations

Storage Conditions

Material may settle over time in storage. Best practice is to remix the material prior to use. Materials should be stored at 50-90°F at 50% relative humidity.
Material Selection

Choosing a Thermal Interface Material (TIM) and Dispensing Method

When designing in a dispensable TIM, there are several considerations to keep in mind when determining the appropriate TIM material required. Forces generated by expansion/contraction or vibration, coupled material hardness, will result in stress on components. Selection of a soft, conformable material with appropriate thickness will minimize potential damage to critical components.

Mechanical

The nominal gap and expected variation in gap will dictate the amount, or thickness of TIM material required. Forces generated by expansion/contraction or vibration, coupled material hardness, will result in stress on components. Selection of a soft, conformable material with appropriate thickness will minimize potential damage to critical components.

Dielectric Strength

Chomerics thermal interface materials are comprised of resins and ceramic fillers that are inherently electrically isolating. The largest filler particles will dictate the minimum gap that can be achieved to prevent direct contact of electrical component to heat-spreader.

Package Size

Chomerics offers a variety of packaging formats and sizes. Selection of the appropriate format will be a function of throughput, shot size, and expected change over-time as well as compatibility with dispensing equipment. Custom packaging is available upon request.

Temperature and Environment

To choose the appropriate material for the application, there has to be an understanding of the heat generation that must be dissipated, as well as environmental conditions and limits. Occasionally there are substrates that limit the temperatures that be used for curing a CIP. Other applications (automotive, under the hood) may present high vibration exposure or extreme temperature cycling that would restrict the type of material that can be used. For example, a GEL material may be selected over a CIP material in applications with extreme thermal shock and vibration because of their inherent tack and elasticity.

Figure 2: Electrical Isolation Typical Ceramic particles shown as natural mechanical stand-offs for electrical isolation

Table 1: Low Volume Dispensing Methods

<table>
<thead>
<tr>
<th>Jar or Container</th>
<th>Manual Hand Dispensing</th>
<th>Cartridge Casing Gun</th>
<th>Shot Size Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manual</td>
<td>Battery Powered</td>
<td>Air or Pneumatic</td>
</tr>
<tr>
<td></td>
<td>No Capillary, Intermediate infections, Small & Portable, Versatile with Tip Attachment, No Purging Required</td>
<td>No Capillary, Small & Portable, Capable of Dispensing Large Volumes, Requires Small Tip Geometry</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Dispensed Size, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Dispensed Size, Location & Shape</td>
<td>Dispensed Size, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
</tbody>
</table>

Features & Benefits

- No Capital, Intermediate Infections, Small & Portable, Versatile with Tip Attachment, No Purging Required
- Dispensed Size, Cycle-Time, Location & Shape
- Dispensed Size, Location & Shape

Equipment Types

<table>
<thead>
<tr>
<th>Common Equipment Type</th>
<th>Jar or Container</th>
<th>Manual Hand Dispensing</th>
<th>Cartridge Casing Gun</th>
<th>Shot Size Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Manual</td>
<td>Battery Powered</td>
<td>Air or Pneumatic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Capillary, Intermediate Infections, Small & Portable, Versatile with Tip Attachment, No Purging Required</td>
<td>No Capillary, Small & Portable, Capable of Dispensing Large Volumes, Requires Small Tip Geometry</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispensed Size, Cycle-Time, Location & Shape</td>
<td>Dispensed Size, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispensed Size, Location & Shape</td>
<td>Dispensed Size, Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location & Shape</td>
<td>Location & Shape</td>
<td>Pressure /Time</td>
</tr>
</tbody>
</table>

NOTE: Chomerics does not officially endorse any of the equipment above or supply it. For equipment technical support please contact the vendor's listed.

* SEMCO is a trademark of PPG Aerospace.
High Volume Dispensing Methods

Table 2: High Volume Dispensing Methods

<table>
<thead>
<tr>
<th>Equipment Types</th>
<th>High Volume Dispensing Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features & Benefits</td>
<td>Cartridge Pumping and Robotic Dispense System</td>
</tr>
<tr>
<td>Operator Responsibility</td>
<td>Purgable dispenser system between materials</td>
</tr>
<tr>
<td>Common Equipment Vendors</td>
<td>None</td>
</tr>
<tr>
<td>Material Cost</td>
<td>Larger bulk containers are the most economical price per cc</td>
</tr>
<tr>
<td>Equipment Description</td>
<td>Contact Local Territory Sales Manager or Applications Engineering for High Volume Equipment Recommendations</td>
</tr>
<tr>
<td>Common Equipment Vendors</td>
<td>Fisnar</td>
</tr>
<tr>
<td>Equipment Description</td>
<td>F4200N & DSP501A-LF (Fisnar)</td>
</tr>
<tr>
<td>Comments</td>
<td>Programmed table top unit that is compatible with available packaging</td>
</tr>
<tr>
<td>Nominal Cartridge Capacity</td>
<td>36-360cc Cartridge</td>
</tr>
<tr>
<td>Pumping Rate</td>
<td>2oz (610cc), 3oz (901cc), & 2.5oz (735cc)</td>
</tr>
<tr>
<td>Tubing Length</td>
<td>30-360cc Cartridge</td>
</tr>
<tr>
<td>Pumping System</td>
<td>4oz (1186cc), 6oz (180cc), 8oz (240cc), 12oz (360cc), 20oz (571cc), & 32oz (953cc)</td>
</tr>
<tr>
<td>Pumping Rate</td>
<td>1-5 gallon Pail</td>
</tr>
</tbody>
</table>

NOTE: Chomerics does not officially endorse any of the equipment above or supply it. For equipment technical support please contact the vendors listed.

Technical Parameter

High Volume Equipment Considerations

High volume applications will require an appropriate dispensing system designed for larger package formats (i.e. SEMCO cartridges and pails). The proper equipment choice will be a function of geometry, throughput requirements, material type, and package. Material selection should be defined prior to selecting equipment to optimize the material performance and the long-term equipment maintenance. Most thermal materials contain high concentrations of ceramic fillers to maximize the thermal performance, so they dispense differently than an unfilled polymer or grease.

GELS are truly unique materials, in that they are fully cured thermally conductive polymers that can be extruded. The advantage in using thermally conductive GELS is that they do not require any mixing or curing once they are dispensed. The key to dispensing a GEL in high volume is to maintain the material's integrity as it is being dispensed by minimizing the tube lengths, maximizing the tubing's inside diameter, and reducing the number of elbows (i.e. bends or angular connections). To successfully dispense GELS with minimal impact to physical properties, simple ram/piston pump systems with adequate force capability have proven most reliable. Reciprocating pumps, gear pumps, or other complex pumping designs impart excessive stress on the material. Pump systems that have high a degree of mechanical interaction with the material may increase maintenance needs due to the high concentrations of thermally conductive and sometimes abrasive fillers.

The valve that dispenses, or controls, the amount of material dispensed needs to be constructed of wear-resistant components to endure a maximum number of cycles. The most successful valves use a progressive cavity (i.e. displacement type option), and are geometrically simple. There are other features that are available in valves, including “snuff-back design” that can aid in the termination of the dispensed bead, as well as built-in shot-size calibration/control.

Two-Component CIP (Cure-In-Place) materials require similar equipment design as GELS, but must also take into consideration mixing, metering, and curing. The CIP materials also require maximizing the tubing’s inside diameter while minimizing tube lengths and number of elbows used (i.e. bends or angular connections). Mixing must be done carefully, without introducing any air, or be done under vacuum (so as not to create air voids). The easiest method of blending the two components is to use a static mixer. Metering, or ensuring the proper amount of each side blended, must be accurate to maintain the materials end properties.
Technical Parameters

Part Considerations

Once a TIM has been selected and the dispensing system has been defined, the next step is to analyze the part(s) to ensure that the correct volume of TIM is delivered to the required location in the correct shape.

As a starting point, use the following tasks to guide part analysis:

- Define number of target locations
- Determine whether TIM will be dispensed on the component side or heat sink side
- Consider all operations that occur post dispense and prior to final assembly that may affect form, placement, cleanliness, position, etc.
- Define dispense technique (this is a function of TIM type, geometry, etc.). Examples include screening, potting, injection, and direct dispense to target

Figure 3: Multiple Location Casting

- Consider any physical obstructions that the dispense head will have to navigate around
- Calculate shot size per dispense location (function of the area of coverage, gaps, and shape)
- Assess the surfaces that will be in contact with the TIM: composition, roughness, and geometric features
- Address cleanliness for proper wetting and thermal performance

Figure 4: Multiple Location Casting

- Assess the special conditions that the TIM will be subject to (see section on Special Considerations):
 - Orientation, Vibration, Mechanical Stresses, and Temperature Extremes
 - Cure conditions when high temperature cure is required for a CIP, with low melt materials in proximity
 - Transporting of part to multiple locations i.e. Packaging, climate, protection, etc.

Table 3: A surface roughness of N8 or rougher is recommended

<table>
<thead>
<tr>
<th>Grade Number</th>
<th>Micrometer</th>
<th>Micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>N8</td>
<td>3.2</td>
<td>125</td>
</tr>
<tr>
<td>N9</td>
<td>6.3</td>
<td>250</td>
</tr>
</tbody>
</table>

To optimize the shape of the dispensed material:
- Determine a pattern (dot, line, or serpentine) that will "wet out" the entire targeted area
- Eliminate any gaps, tolerances, and geometries associated with improvement of flow and cycle time, such as effects of shear on the material, sag/slump behavior, effects on shape of pattern, and filler separation in delivery system (damming)
Technical Parameters

Surface Wetting

The surface of the part should be free from lint, processing oils, or general FOD (foreign object debris). If there is a concern with cleanliness, the surface can be cleaned with a mild solvent, such as isopropyl alcohol (IPA), or any suitable surface cleaner.

The objective is to have the dispense tip as low as possible to achieve sufficient wetting and bead initiation/termination (see figure 5). This may require some trials to determine the appropriate combination of dispense tip diameter, height, and corresponding speed and service pressure.

The first consideration is to target each bead shape and volume to properly wet and fill the gap between the two surfaces. As an initial recommendation, consider a bead height of 2X to 3X the nominal gap to promote wetting.

As a general rule, increased surface roughness will increase the surface area available for wetting. In vertical applications, the increased surface roughness will increase the surface area available for wetting. In vertical applications, the increased surface roughness will increase the surface area available for wetting.

In some cases, a degree of staging time (prior to further processing) will enhance wetting of the TIM to the target surfaces (i.e. component, heat spreader) without damaging the substrate.

In cases where rework is required, first remove the bulk of the material using a soft tool that will not damage the substrate (i.e. a rubber spatula, tongue depressor). Apply a mild surface cleaner such as IPA to remove remaining residue and clean the surface, then reapply the TIM.

When using a CIP material, it may be more difficult to peel the material off the components once it is cured. The best way to remove the material is to abrade the surface with a soft tool (wooden stick or Q-tip) and then clean the surface with IPA (toluene may work better).

Figure 6: Common Line Dispensing Concerns

Common dispensing issues: (top) system did not have a program for bead termination, (middle top) needle was too high and there was no bead termination programmed, (middle bottom) needle too low, (bottom) correct height with bead termination.

Figure 7: Reliability Reports

The images above show one of the 18 trials that were performed on GEL30 in a vertical orientation tested under several different surface roughnesses, gaps, and surface areas. The test fixtures were subject to temperature shock and random vibration. Contact Parker Chomerics Applications for report. (Image to the left is before and Image to the right is after the treatment).

Technical Parameters

Special Material Considerations

THERM-A-GAP GELs are fully cured elastomers that are loosely cross-linked and can easily be extruded. Excessive shear force from complex dispense geometries and high pressure can affect the material structure and affect the rheology of the material. It is important to minimize the degree of shear imparted on the GELs by using a needle with a larger orifice, larger inner diameter tubing, fewer elbows, and lower pressure. Due to this sensitivity to shear, the GELs are designed to be dispensed out of the packaging only once. Repackaging would change the mechanical properties of the material.

For reworking, it is recommended to use a cloth, lint free towel, or spatula to remove the GEL from the substrate. The material should be reapplied. Fresh material should be reapplied.

THERM-A-FORM CIP (Cure-In-Place) Compounds are designed to be dispensed and cured directly into the application. The surfaces that the mixed compounds are applied to should be free from any cure-inhibiting contaminants, especially those containing: nitrogen, sulfur, tin, phosphorus, and latex. It is important to consider the cure times and temperatures required to fully cure the material and their effect on processing, cycle times, and substrates.

Generally, for the thermal cure materials, every 10°C increase in cure temperature will reduce the cycle to half of the original time (keeping in mind the exposure limits of other components). Another important consideration for these systems is pot-life.

Once catalyzed, there is a finite amount of time that material will flow adequately. Proper measures must be addressed to ensure shot size control. Static mixing nozzles are provided with all standard two-component THERM-A-FORM products. It is important to use the appropriate static mixing nozzle as they differ with mix ratio (i.e. 1:1 and 10:1). Components encapsulated by a THERM-A-Form compound can be removed by notchting and peeling away the cured compound from the components.

Other thermally conductive dispensible materials such as thermal greases were the historical thermal solution. These materials were designed to achieve minimum bond-line. The typical application is through stenciling or screen printing. It is important in both of these methods to ensure that the screen or stencil is a minimum of 3X thicker than the maximum particle size in the compound. If the holes of the screen are too small or the stencil is too thin, it may filter out some of the conductive particles in the compounds. Due to the non-crosslinked nature of these materials, they may have a tendency to separate in the package. It is best practice to always mix the material prior to usage. For reworking, the material can be removed with a simple cleaning solvent prior to reapplying.
Ordering Information

Table 4: Standard Packages 6W-XX-YYYYY-ZZZZ

<table>
<thead>
<tr>
<th>W</th>
<th>XX</th>
<th>YYYY</th>
<th>ZZZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Standard Packaging</td>
<td>00</td>
<td>THERM-A-GAP GEL, T630, T630G, T635, T636, GEL8010, GEL30 & GEL30G, GEL45, T650</td>
</tr>
<tr>
<td>V</td>
<td>Custom Packaging</td>
<td>11</td>
<td>Custom Part Number</td>
</tr>
<tr>
<td>S</td>
<td>Standard Packaging</td>
<td>00</td>
<td>THERM-A-FORM (10:1) T642</td>
</tr>
<tr>
<td>S</td>
<td>Standard Packaging</td>
<td>01</td>
<td>THERM-A-FORM (1:1) T644, T646, T647, CIP35</td>
</tr>
<tr>
<td>S</td>
<td>Standard Packaging</td>
<td>00</td>
<td>THERM-A-FORM Compound 1641 & Primer 1086</td>
</tr>
<tr>
<td>S</td>
<td>Standard Packaging</td>
<td>00</td>
<td>Thermal Grease T650, T670</td>
</tr>
</tbody>
</table>

Table 5: Packaging Options

<table>
<thead>
<tr>
<th>A</th>
<th>Primer Vial</th>
<th>H</th>
<th>5cc Cartridge Kit (1:1) w/ Static Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2.6cc Jar</td>
<td>I</td>
<td>5cc Optimum Cartridge</td>
</tr>
<tr>
<td>C</td>
<td>2.5cc Tube</td>
<td>J</td>
<td>500cc Optimum Cartridge Kit (1:1)</td>
</tr>
<tr>
<td>D</td>
<td>10cc Syringe w/ Cap</td>
<td>K</td>
<td>250cc Cartridge Kit (10:1) w/ Static Mix</td>
</tr>
<tr>
<td>E</td>
<td>30cc Taper Tip Cartridge</td>
<td>L</td>
<td>200cc Aluminum Cartridge (13oz)</td>
</tr>
<tr>
<td>F</td>
<td>30cc Optimum Cartridge/Tip</td>
<td>M</td>
<td>1oz. SEMCO</td>
</tr>
<tr>
<td>G</td>
<td>5cc Cartridge Kit (10:1) w/ Static Mixer</td>
<td>N</td>
<td>8 oz. SEMCO</td>
</tr>
</tbody>
</table>

Figure 8: Typical Packaging Options

Figure 9: Typical High Volume Packaging Options

Customer Responsibility and Offer of Sale Statement

CUSTOMER RESPONSIBILITY

WARNING – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries, and authorized distributors provide product or system options for further investigation by users having technical expertise. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety, and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed “Offer of Sale” elsewhere in this document or available at www.parker.com.
Chomerics Worldwide

Corporate Facilities
To Place an Order Please Contact a Customer Service Representative at the Following Locations

North America
Global Division Headquarters
77 Dragon Court
Woburn, MA
Phone +1 781-935-4850
Fax +781-933-4318
chomailbox@parker.com

Product Disclosure
(ROHS/REACH, Material Declarations, SDS)
choproductdisclosure@parker.com

Europe
Parker Hannifin Ltd
Chomerics Division Europe
Unit 6, Century Point
Halifax Road
High Wycombe
Bucks HP12 3SL
UK
Phone +44 1494 455400
Fax +44 14944 55466
chomerics_europe@parker.com

Asia Pacific
Parker Hannifin
Chomerics Shanghai
280 Yunqiao Road, Jin Qiao Export Processing Zone, Shanghai 201206, China
Phone +86 21 2899 5000
Fax +86 21 2899 5146
chomerics_ap@parker.com

Parker Hannifin
Chomerics Shenzhen
No.5 Bldg Jinrongda Technological Park Gangtou Village, Bantian Longgang District Shenzhen, 518122, China
Phone +86 755 8974 8558
Fax +86 755 8974 8560
chomerics_ap@parker.com

Parker Hannifin
Chomerics Kula Lumpur
Lot 15, Jalan Gudang 16/9
Section 16, Shah Alam
Industrial Estate, 40200 Shah Alam
Selangor, Malaysia
Phone +603 5510 9188
Fax +603 5512 6988
chomerics_ap@parker.com

Penang, Malaysia
No.3, Puncak Perusahaan 1, 13600
Prai, Penang, Malaysia
Phone +604 398329
Fax +604 3983299
chomerics_ap@parker.com

Parker Hannifin India Private Limited
Chomerics Division,
Plot No. 41/2, 8th Avenue DTA, Anjur Village, Mahindra World City, Chenagapattu, Tamilnadu - 603 004, India
Phone +91 44 67132333
Phone +91 44 67132045
chomerics_ap@parker.com

Manufacturing Facilities
Woburn, MA; Hudson, NH; Cranford, NJ; Millville, NJ; Fairport, NY; Monterrey, Mexico; Grantham, UK; High Wycombe, UK; Sadska, Czech Republic; Shanghai, PRC; Shenzhen, PRC; Penang, Malaysia; Kuala Lumpur, Malaysia; Chennai, India.

www.parker.com/chomerics

© 2018 Parker Hannifin Corporation. All rights reserved. CHOMERICS is a registered trademark of Parker Hannifin Corporation.

Literature Number: MB 1006 EN August 2018