Linear Motor Proportional Valve

Markets

- Respiratory
- Anesthesia
- Patient Therapy

Applications

- · Ventilators (Gas Blending & Delivery)
- Insufflators
- · Anesthesia Delivery
- Pressure and Flow Control

The Parker LM Pro miniature proportional valve provides unparalleled flow control capabilities to meet your OEM application needs. The LM Pro uses a patent pending linear motor actuation technology that provides exceptional resolution over a wider flow range and lower power consumption than traditional solenoid or voice coil actuation. With a linear controllable flow up to 540 slpm, pressure capability up to 100 PSIG (6.9 Bar), and typical power consumption of less than 2 Watts, the LM Pro is a true, one-size-fits-all proportional valve. The wide range of high-resolution flow control meets breathing circuit requirements from neonate up to adult. With unrivaled performance capability combined with the simplicity of a face-mounted/ported design, the LM Pro valve is an ideal solution for all your dynamic flow control needs.

Features

- Large linear flow control range spanning 70% of the current rating enabling accurate low and high flow rate control
- · Low power consumption: Typical operation under 2 Watts
- Proven performance: Life cycle rated to 100 million cycles (.95 Reliability factor. 95% confidence interval)
- Face mount porting and optional integrated filter simplifies integration and reduces manifold complexity
- Cleaned for Oxygen use per ISO15001:2010 and meets ISO10993 Biocompatibility
- Reach and RoHS compliant

Product Specifications

Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, Oxygen, Nitrous Oxide, Carbon Dioxide, Heliox and other medical gases

Operating Environment:

32 to 140°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.57 in (39.9 mm)

Width:

0.72 in (18.3 mm)

Height:

1.44 in (36.5 mm)

Porting:

Face Seal to Manifold with integrated FKM seal and optional inlet filter

Weight:

1.29 oz (36.6 g)

Electrical

Power:

2.0 Watts Nominal 3.0 Watts Maximum

Voltage:

5, 12 and 24 VDC See Table 1 on page 6

Electrical Termination:

Latching Receptacle JST SM02B-PASS-TB

Wetted Materials

Valve Element:

Aluminum FKM Elastomer

Fluorosilicone Elastomer

Stainless Steel

Regulatory:

Compliant with RoHS directive (2002/95/EC), REACH EC 1907/2006, ISO 15001:2010 and ISO 10993:2010 / ISO 18562

Performance Characteristics

Leak Rate:

Internal: 1 SCCM External: 1 SCCM

LM Pro Valve meets leak specification across entire operational pressure range.

Operating Pressure:

Model 2: 0 - 100 psig (6.9 bar), Model 4: 0 - 50 psig (3.45 bar)

Vacuum:

0 - 27 in Hg (0-686 mm Hg)

Proof Pressure:

Model 2: 150 psig (10.39 bar), Model 4: 110 psig (7.6 bar)

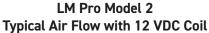
Orifice Sizes:

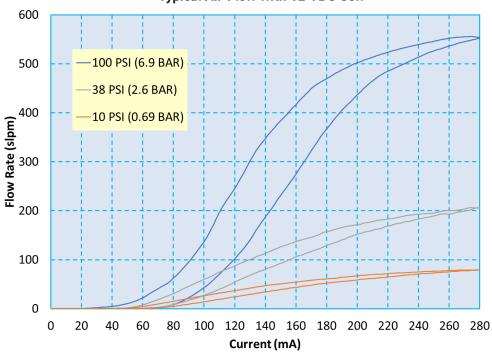
Model 2: 0.121 in (3.07 mm) effective, Model 4: 0.134 in (3.40 mm) effective

Hysteresis:

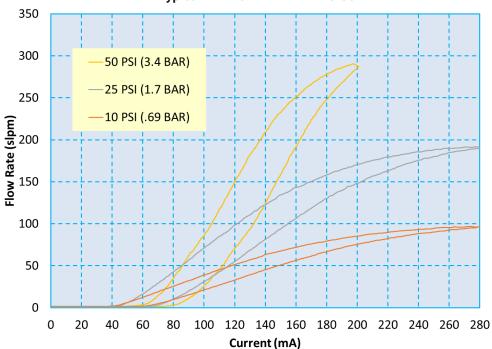
10% of full scale current (Typical) 15% of full scale current (Maximum)

Optional Filtration:


400 µm

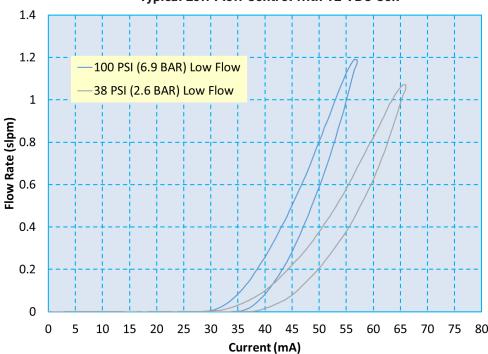

Response time:

<10 ms Typical at 20°C

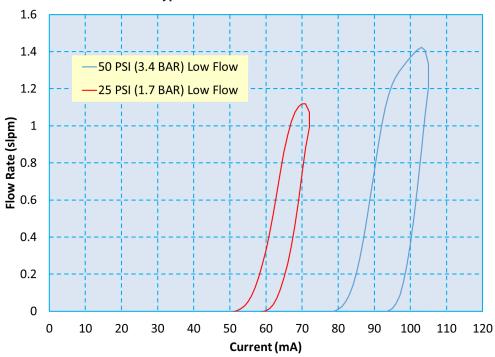


Typical Flow Curve

LM Pro Model 4* Typical Air Flow with 12 VDC Coil

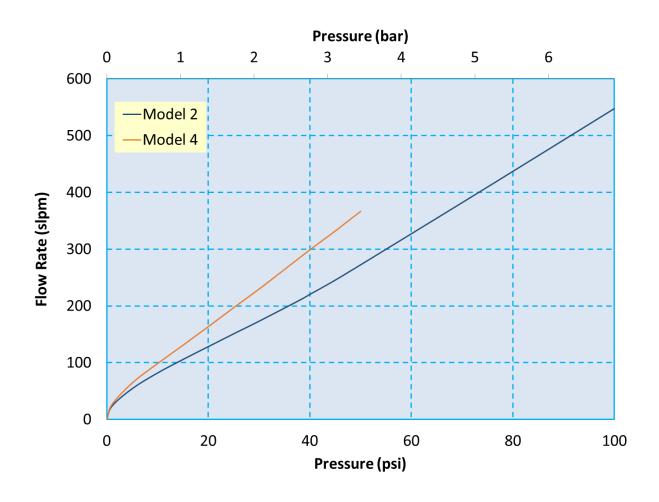


^{*}During operation at 50psi, a flow shift of up to 5% over the life of the valve may occur.

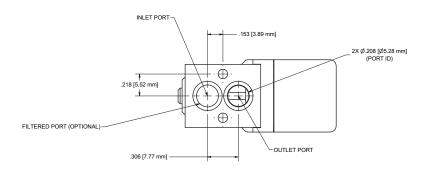


Typical Flow Curve

LM Pro Model 4*
Typical Low Flow Control with 12 VDC Coil

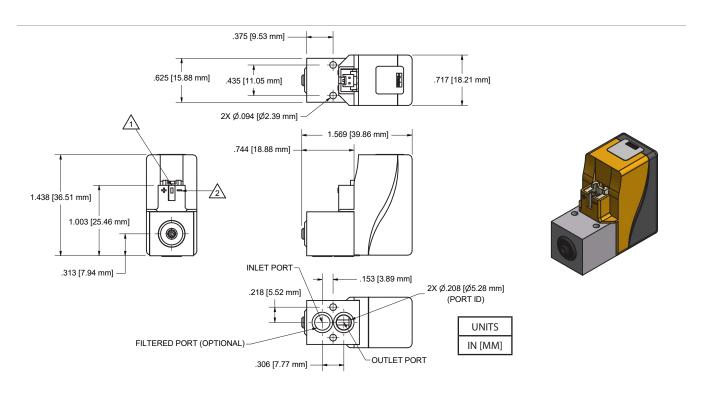

^{*}During operation at 50psi, a flow shift of up to 5% over the life of the valve may occur.

LM Pro Miniature Proportional Valve **Typical Flow Curve**

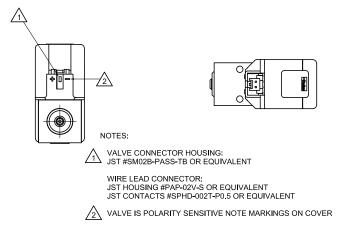

Pressure vs Flow Curve

The curve below shows the typical output flow rate at maximum rated current as a function of inlet pressure.

Pneumatic Interface


Parker LM Pro Manifold Mount

Mechanical Integration


Dimensions

Parker Parker LM Pro Basic Valve Dimensions

Electrical Interface

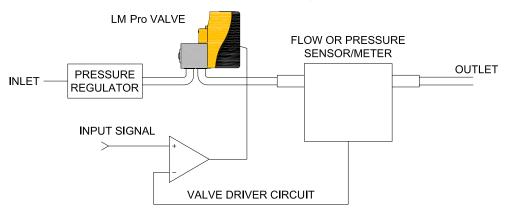

Electrical Requirements

Table 1

Related Voltage	Nominal Coil Resistance at 20°C	Control Current at Maximum Flow
5 VDC	6 Ω	555 mA
12 VDC	24 Ω	280 mA
24 VDC	148 Ω	115 mA

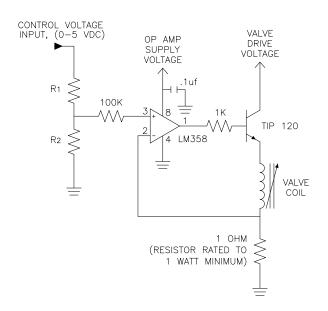
Installation and Use

Typical Valve Set-up

Valve Electrical Control

Basic Control:

The LM Pro valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.


PWM Control:

For PWM control, the signal applied to the valve should have a frequency of 5 kHz or greater. Optimum frequency will be application dependent.

Installation and Use

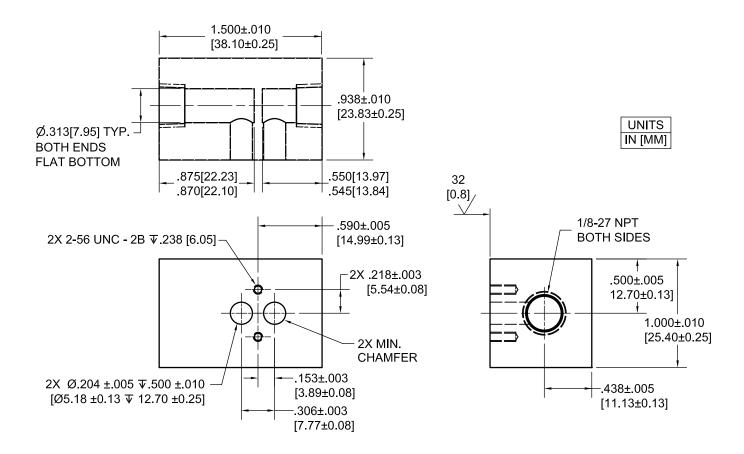
Suggested Parker LM Pro Current Driver Schematic

This simple driver circuit provides a constant current to the LM Pro valve where a 0-5 Volt input signal equals the full current range of the LM Pro.

Table 2 (below) provides the R1 and R2 resistor values based on the individual LM Pro model being tested.

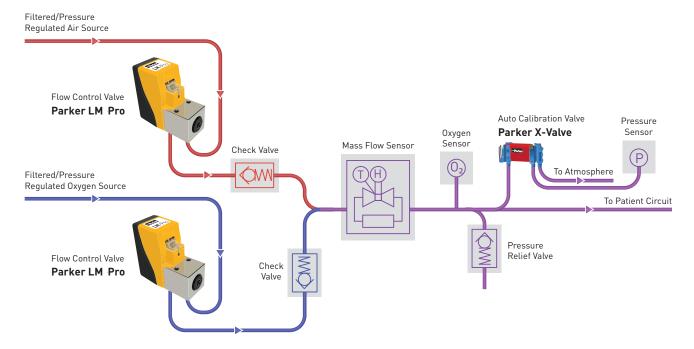
Table 2: Selectable Resistor Values for a Low Current (1 mA)
LM358-Based Current Driver

Valve Drive Voltage Input (VDC)	Valve Coil Voltage, Resulting (VDC)	Nominal Coil Resistance @ 20°C (Ohms)	Input Current for Full Flow (mA)	R1 (Ohms)	R2 (Ohms)
5	7	6	555	3920	499
12	14	24	280	3920	237
24	26	148	115	4320	102

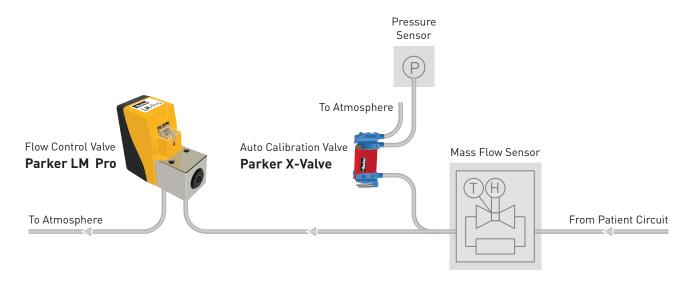


Installation and Use

Manifold Dimensions & Design


Not shipped with valves.

Parker Precision Fluidics recommends 24 in-oz (17 N-cm) of torque for the screws.



Ventilator Inspiratory Flow

Ventilator Expiratory Flow

LM Pro Miniature Proportional Valve Accessories

12.5" Adapter Wire Leads 290-006061-004

Single Station Manifold 890-001184-001

Screw #2-56 x 3/4"
Socket Head Cap Screw
(see valve mounting recommendations above)

Manifold O-Ring (FKM) 190-007063-001 (supplied with valve)

Optional Filter 195-000291-001

Ordering Information

Sampl	le Part	ID 937		02	1	12	0		01	0
Descri	iption	Series	1	Model Number	Elastomer	Voltage	Body Material	-	Pneumatic Interface	Electric Interface
Optio	ons	937	1	02: 100psi/0.121 in (3.07 mm) 04: 50 psi/0.135 in (3.43 mm)	1: FKM Poppet and Fluorosilicone Diaphragm	05: 5 VDC 12: 12 VDC 24: 24 VDC	0: Aluminum	-	00: Manifold Mount No Inlet Filter 01: Manifold Mount with Filter	0: No Wire Leads

Accessories				
290-006061-004: 12.5 in (317.5 mm) Wire Leads	** Not supplied with the valve			
890-001184-001: Manifold, Single Station	** Not supplied with the valve			
190-007063-001: Manifold O-Ring (FKM)	** Supplied with the valve			
191-000112-417: Screw #2-56 x 3/4, Socket Head Cap	** Not supplied with the valve. See valve mounting recommendations above			
195-000291-001: Optional Filter	** Supplied if selected option			

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- · Media, Inlet & Outlet Pressures
- · Minimum Required Flow Rate
- · System Supply Voltage
- Media & Ambient Temperature Range

To order online, please <u>visit our website</u>. For more detailed information, visit us on the Web, or call and refer to Parker LM Pro Performance Spec. 790-002627-001.

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

