

HYDRAULIC VANE PUMP T7G SERIES

For electric, hybrid & diesel trucks

WARNING — USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors
 provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and
 components and assuring that all performance, endurance, maintenance, safety and warning requirements of the
 application are met. The user must analyze all aspects of the application, follow applicable industry standards, and
 follow the information concerning the product in the current product catalog and in any other materials provided
 from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

SALE CONDITIONS

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered into by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

Table of Contents

General Information
Indroduction and product key features
Description of the T7G pumps
Main Technical Data
Speed and pressure ratings for single pumps
Speed and pressure ratings for double pumps
Inlet pressure range
Outel pressure range
Pump operating range1
Hydraulic fluids and seals
Ordering Code
T7GB Model description 1
T7GC M** Model description
T7GC E** Model description
T7GBB Model description1
T7GCC Model description1
Porting diagrams for double pumps
Technical Data
Technical Data T7GB1
Technical Data T7GC M**1
Technical Data T7GC E**
Technical Data T7GBB2
Technical Data T7GCC
Circuit Design
Pump selection example
Start-up instructions and maintenance 2
Sweep hole
Dimensions

If you have questions about the products contained in this catalog, or their applications, please contact:

Parker Hannifin EMEA Sàrl European Headquarters

parker.com/msge

GENERAL INFORMATION

The T7G hydraulic pumps

Introduction

With great pleasure and proudness, Parker Hannifin is presenting its new T7G Series of hydraulic pumps for trucks.

New stronger housings combined with our latest technology of Variable Speed Driven pumping units, this family of single and double hydraulic vane pumps is ready for installation on any kind of truck using the ISO 7653 mounting standard.

A family of Vane pumps designed for the heavy-duty applications offering optimal performances, lifetime and money savings for our OEM customers and end users.

These high-quality products are the result of years of constant improvements of the only and well-known Parker Denison Technology expertise.

New **T7G** pumps

Designed for:

- Hybrid
- Electric
- Diesel
- H₂ Trucks

Product key features

High performance

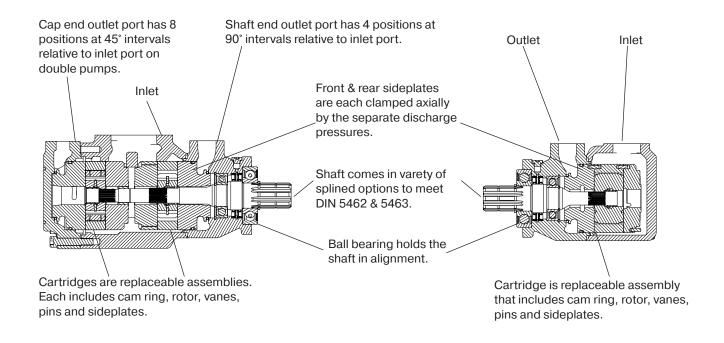
- Enhanced pressure capability and high operating speeds for best efficiencies
- Better cold start capability with the Variable Speed Driven technology
- eLoad Sense ready Variable Speed Driven technology

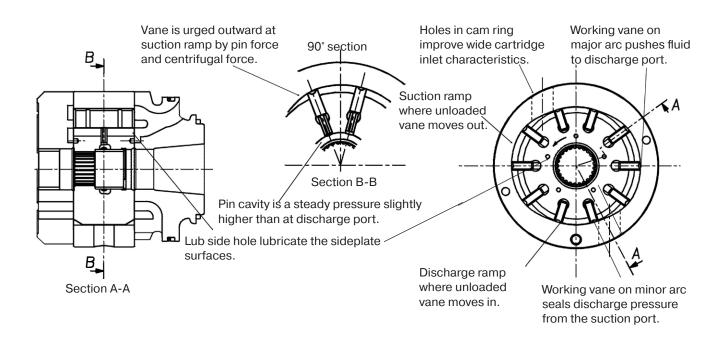
Low noise

The Denison Vane Technology allows very low noise levels over the entire operating range and during the whole life of the pump.

Reliable performance

The T7G hydraulic pumps are offering a wide operation speed range, and like all our T7G Series vane pumps, their performances do remain very stable over time, making these pumps an ideal solution for modern hydraulically operated machines.


Environment friendly


In addition to being almost fully recyclable, the T7G hydraulic pumps may also run with HEES Bio oils, helping the planet to stay clean.

Versatility and compactness

Shorter length and lighter bodies. The T7G Series is offering an easier installation that is respecting the specifications of the truck manufacturers. Several displacements for the same installation size Available as single or double pumps, with many different displacements to match with the application needs.

Description of the T7G pumps

MAIN TECHNICAL DATA

Speed and pressure ratings

Single pumps		Theoretical	Minimum	Maximum Speed	M	aximum Pressu	ire
Single pullips		Displacement	Minimum Speed	HFO. HF2 HF6a.	HF0	. HF2. HF6a. H	F6b
Туре	Ring	Vi	Орсси	HF6b	Peak	Int.	Cont.
Type	nilly	cm³/rev.	rpm	rpm	bar	bar	bar
	M03	10.8					
	M05	17.2					
	M06	21.3					
	M08	26.4		*2800			
	M10	34.1					
	M12	37.1		400	300	275	240
T7GC	M14	46.0	400				
	M17	58.3					
	M20	63.8					
	M22	70.3		*2500			
	M25	79.3		2500			
	M28	88.8			220	010	160
	M31	100.0			230	210	160
	E03	9.8				300	
	E04	12.8					
	E05	15.9		0000			
	E06	19.8					
	E07	22.5		3600			
T700	E08	24.9	150		350		275
T7GB	E09	28.0	150				
	E10	31.8					
	E11	35.0		3400			
	E12	41.0		2000			
	E14	45.0		3000			
	E15	50.0		2700	330	280	240
	E17	58.3		2400			
T700	E20	63.8	200	2200	200	000	000
T7GC	E22	70.3	200	2000	290	260	230
	E25	79.3		1800			

HF0, HF2 = Antiwear Petroleum Base
HF6a = HEES saturated Bio fluids
HF6b = HEES partially saturated Bio fluids

Note: For further information or if the performance characteristics outlined in the table do not meet your particular requirements, please consult your local Parker office.

*Please be sure that the inlet velocity is under 1.9 m/sec.

Speed and pressure ratings

Double p	umps	Theoretical Displacement	Minimum	Maximum Speed HFO. HF2 HF6a.		aximum Pressu . HF2. HF6a. H	
	Vi		Speed	HF6b	Peak	Int.	Cont.
Туре	Ring	cm³/rev.	rpm	rpm	bar	bar	bar
	M03	10.8					
	M05	17.2					
	M06	21.3					
	M08	26.4					
	M10	34.1		*2800			
	M12	37.1		~2800	300	275	240
T7GCC	M14	46.0	400		300	2/5	240
	M17	58.3					
	M20	63.8					
	M22	70.3					
	M25	79.3					
	M28	88.8		*2500			
	M31	100.0			230	210	160
	E03	9.8					
	E04	12.8					
	E05	15.9					
	E06	19.8		3600			
	E07	22.5		3000			
T7GBB	E08	24.9	150		350	300	275
IIGDD	E09	28.0	130				
	E10	31.8					
	E11	35.0		3400			
	E12	41.0		3000			
	E14	45.0		3000			
	E15	50.0		2700	330	280	240

HF0, HF2 = Antiwear Petroleum Base
HF6a = HEES saturated Bio fluids
HF6b = HEES partially saturated Bio fluids

Note: For further information or if the performance characteristics outlined in the table do not meet your

particular requirements, please consult your local Parker office.

*Please be sure that the inlet velocity is under 1,9 m/sec.

Inlet pressure range

- Minimum inlet pressure:

Read the minimum inlet pressure requirement in the below table, depending on the pump type, ring size and

its maximum operating speed. Never work under 0.8 bar Absolute (11.6 psi Absolute).

Cartridge		Theoretical					Speed	(rpm)														
Туре	Ring	Displacement Vi (cm³/rev.)	1800	2100	2200	2300	2500	2800	3000	3100	3400	3600										
	M03	10.8																				
	M05	17.2																				
	M06	21.3				0.80	0.90															
	M08	26.4			0.80			1.00														
	M10	34.1		0.80																		
	M12	37.1				0.85	0.92															
C	M14	46.0	0.80			0.03																
	M17	58.3			0.85		0.95	1.03														
	M20	63.8			0.00	0.90		1.00														
	M22	70.3		0.85	0,90		0.98	1.05														
	M25	79.3	0.90	0.95	0.95	1.05																
	M28	88.8		0.90	0.98	0.98	1.08															
	M31	100.0			0.90	1.00	1.11															
	E03	9.8																				
	E04	12.8			_		0.80 0.80					0.80	0.80	0.80	0.80							
	E05	15.9				80 0.80		0.80	30 0.80	0.80												
	E06	19.8		80 0.80	0.80						0.80	0.80	0.80						0.82	0.85	0.92	0.98
	E07	22.5														0.80	0.80	0.02	0.00	0.92	0.90	
В	E08	24.9	0.80											0.00	0.00	0.80	0.80	0.80	0.00	0.85	0.88	0.98
	E09	28.0	0.00									7.00 0.00	0.80		L	0.00	0.00	0.90	1.03			
	E10	31.8								0.94	1.07	1.15										
	E11	35.0	5.0				0.90	0.96	1.15													
	E12	41.0																				
	E14	45.0					0.84	0.9	1.13													
	E15	50.0					0.04															
	E17	58.3		0.80	0.85		0.95	1.03														
C	E20	63.8	0.80	0.00	0.00	0.90	0.90	1.03														
	E22	70.3	0.00	0.85	0.90		0.98	1.05														
	E25	79.3		0.90	0.95	0.95	1.05															

Inlet pressure is measured at inlet flange with petroleum base fluids at viscosity between 10 and 65 cSt. The difference between inlet pressure at the pump flange and atmospheric pressure must not exceed 0.2b bar to prevent aeration.

Multiply absolute pressure by 1.1 for HF-6a and HF-6b fluids.

For double pumps, take the value of the cartridge requiring the highest absolute pressure.

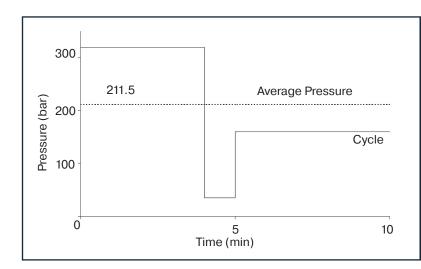
- Maximum inlet pressure :

Read the information on the product key sheet page. Standard shaft seals are limited to 0.7 bar (10 psig) but some allow 7 bar (100 psig).

Outlet pressure range

- Minimum outlet pressure:

It is recommended to always keep at least 1.5 bar (22 psi) differential between inlet and outlet.


- Maximum outlet pressure:

Please read the charts in this catalogue for the Max continuous and the Max intermittent pressure ratings. Depending on the average pressure in cycle, either the continuous or the intermittent will be the limit.

- Average pressure in cycle:

These Pumps may be operated intermittently at pressures higher than the recommended continuous rating when the time weighted average of pressure is less than or equal to the continuous duty pressure rating. This intermittent pressure rating calculation is only valid when the other parameters: speed, fluid, viscosity and contamination level are respected.

For total cycle time longer than 15 minutes, please consult your Parker representative.

Example: T7GB E10

Duty cycle 4 min. at 320 bar

1 min. at 35 bar

5 min. at 160 bar

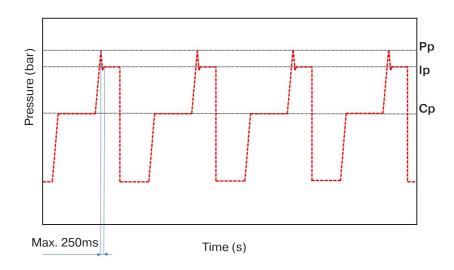
 $(4 \times 320) + (1 \times 35) + (5 \times 160) = 211.5$ bar

10

211.5 bar is lower than 290 bar allowed as continuous

pressure for T7GB E10 with HF-0 fluid.

Peak pressure definition (Pp):

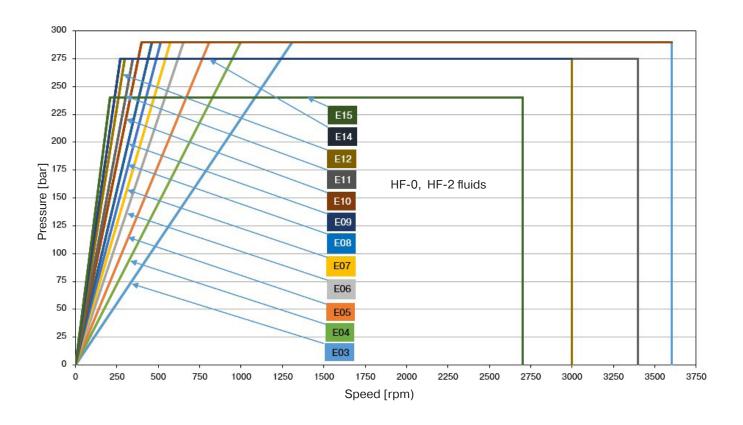

Is the maximum pressure allowed and it corresponds to the overshoot of the relief valve.

Relief valve setting and overshoot must be lower than their limits.

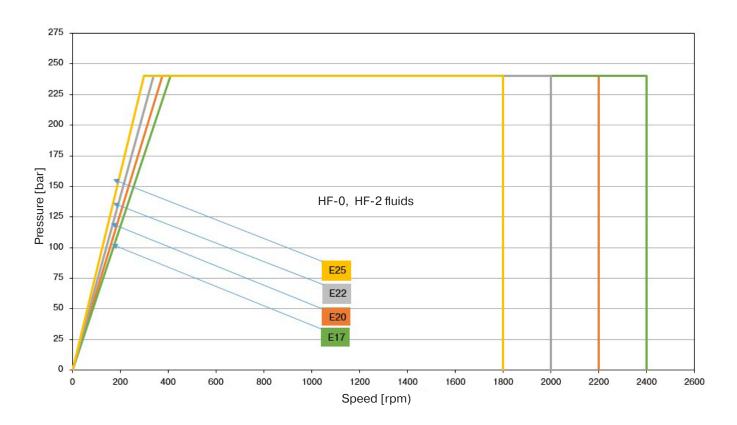
If the relief valve setting is lower than the limit but the

overshoot is higher, then the relief valve setting must be decreased until the overshoot will be compliant with Parker limit.

Please contact us for high frequency applications.



Pp: Peak pressure


Ip: Intermitent pressure

Cp: Continuous pressure

T7GB E** Operating Range

T7GC E** Operating Range

Hydraulic Fluids

Recommended hydraulic fluids

Petroleum base anti-wear, anti-rust and anti-oxydation fluids (covered by Parker Denison HF0 and HF2 specifications).

Maximum catalogue ratings and performance data are based on operation with these fluids.

Acceptable alternate hydraulic fluids

The use of fluids other than petroleum base anti-wear R & O fluids requires that the maximum ratings of the motor will be reduced. In some cases, the minimum replenishment pressure must be increased. Parker Denison HF6a, HF6b: HEES Bio hydraulic fluids

Hydraulic fluids viscosity

The minimum Viscosity Index is 90. The kinematic viscosity range is as below. Over or under these values, please contact Parker.

Max. E** (cold start, low speed & pressure)	5000 cSt
Max. M** (cold start, low speed & pressure)	2000 cSt
Max. (full speed & pressure)	108 cSt
Optimum (max. lifetime)	30 cSt
Min. (full speed & pressure)	10 cSt

Hydraulic fluids temperatures

The usual limitating factor of temperature (low or high) comes from the obtained viscosity. The seals are sometimes the limit.

Maximum fluid temperature (also depends on min. viscosity). Minimum fluid temperature (also depends on max. viscosity).

	° C	° F
HF0, HF2	+ 100	(+ 212)
HF6a, HF 6b	+ 80	(+ 176)
HF0, HF2, HF6a, HF6b	- 18	(- 0.4)

Filtration requirement

The fluid must be cleaned before and during operation to maintain a contamination level of ISO 19 / 17 / 14 or NAS 1638 class 8 or better. No inlet strainer or inlet filter is allowed on these fixed displacement vane pumps.

Water contamination in hydraulic fluid

The maximum acceptable content of water shall be limited to 0.10 % for mineral base fluids, and 0.05 % for synthetic fluids, crankcase oils, and biodegradable fluids. The eventual excess of water must be drained off the circuit.

Types of seals

Seals type 1: Use this seal type for standard applications: Mineral oil hydraulic fluid and hydraulic fluid temperature <+ 90° C (+ 194° F).

Seals temperature range :

- 40°C to + 130° C (- 40° F to + 266° F).

Seals type 5: Use this seal type with: Some Bio hydraulic fluids and/or hydraulic fluid temperature > + 90° C (+194° F). Seals temperature range: - 29° C to + 204°C (- 20° F to + 400°F).

ORDERING CODE

T7GB E14 6R00 A100

T7GB series - DIN - 4 bolts **Ports** NF ISO 7653 **SAE Flange J518** Metric UNC threads threads **Displacement** Volumetric displacement (cm³/rev) **M0** 00 Code E03 = 9.8S 1.1/2" E04 = 12.81" P E05 = 15.9E06 = 19.8E07 = 22.5E08 = 24.9Seal class E09 = 28.01 = S1 BUNA N E10 = 31.87 bar max. (for mineral oil) E11 = 35.0S5 VITON® E12 = 41.07 bar max. (for mineral oil and E14 = 45.0fire resistant fluids) E15 = 50.0**Design letter** Optimized for Variable speed drive application Porting combination Type of shaft 6 = splined (DIN 5462) Direction of rotation (shaft end view) R = Clockwise

L = Counter-clockwise

T7GC M22 6R00 A100

T7GC series - DIN - 4 bolts NF ISO 7653 Displacement Volumetric displacement (cm3/rev) M03 = 10.8M05 = 17.2M06 = 21.3M08 = 26.4M10 = 34.1M12 = 37.1M14 = 46.0M17 = 58.3M20 = 63.8M22 = 70.3M25 = 79.3M28 = 88.8M31 = 100.0Optimized for Mobile application

Ports

	SAE Flange J518				
	Metric UNC threads				
Code	МО	00			
S	1.1/2"				
Р	1"				

Seal class

1 = S1 BUNA N

7 bar max. (for mineral oil)

5 = S5 VITON®

7 bar max. (for mineral oil and fire resistant fluids)

Design letter

Porting combination

Type of shaft

6 = splined (DIN 5462)

Direction of rotation (shaft end view)

R = Clockwise

L = Counter-clockwise

T7GC E22 6R00 A100

T7GC series - DIN - 4 bolts

NF ISO 7653

Displacement

Volumetric displacement (cm3/rev)

E17 = 58.3

E20 = 63.8

E22 = 70.3

E25 = 79.3

Optimized for

Variable speed drive application

Type of shaft

6 = splined (DIN 5462)

Direction of rotation (shaft end view)

R = Clockwise

L = Counter-clockwise

Ports

	SAE Flange J518				
	Metric UNC threads				
Code	МО	00			
S	1.1/2"				
Р	1"				

Seal class

1 = S1 BUNA N

7 bar max. (for mineral oil)

5 = S5 VITON®

7 bar max. (for mineral oil and fire resistant fluids)

Design letter

Porting combination

T7GBB E14 E10 6R00 A110

P2

T7GBB series - DIN - 4 bolts
NF ISO 7653

Displacement P1 and P2

Volumetric displacement (cm3/rev)

E03 = 9.8

E04 = 12.8

E05 = 15.9

E06 = 19.8

E07 = 22.5

E08 = 24.9

E09 = 28.0

E10 = 31.8 E11 = 35.0

E12 = 41.0

E14 = 45.0

E15 = 50.0

Optimized for

Variable speed drive application

Type of shaft

6 = splined (DIN 5462)

Ports

	SAE Flange J518					
	Metric threads		1	JNC reads		
Code	ОМ	1 M	00	10		
S	3"	2.1/2"	3"	2.1/2"		
P1		-	1"			
P2		1"				

Always place the largest cartridge on the P1 port.

Seal class

1 = S1 BUNA N

7 bar max. (for mineral oil)

5 = S5 VITON®

7 bar max. (for mineral oil and fire resistant fluids)

Design letter

Porting combination

See Link to porting diagrams


Direction of rotation (shaft end view)

R = Clockwise

L = Counter-clockwise

T7GCC M17 M10 6R00 A100

P2

T7GCC series - DIN - 4 bolts
NF ISO 7653

Displacement P1 and P2

Volumetric displacement (cm3/rev)

M03 = 10.8

M05 = 17.2

M06 = 21.3

M08 = 26.4

M10 = 34.1

M12 = 37.1

M14 = 46.0M17 = 58.3

M20 = 63.8

M22 = 70.3

M25 = 79.3

M28 = 88.8

M31 = 100.0

Optimized for Mobile application

Type of shaft

6 = splined (DIN 5462)

Ports

	SAE Flange J518					
	Metric threads				1	JNC reads
Code	ОМ	1 M	00	10		
S	3"	2.1/2"	3"	2.1/2"		
P1		1	1"			
P2		1"				

Always place the largest cartridge on the P1 port.

Seal class

1 = S1 BUNA N

7 bar max. (for mineral oil)

5 = S5 VITON®

7 bar max. (for mineral oil and fire resistant fluids)

Design letter

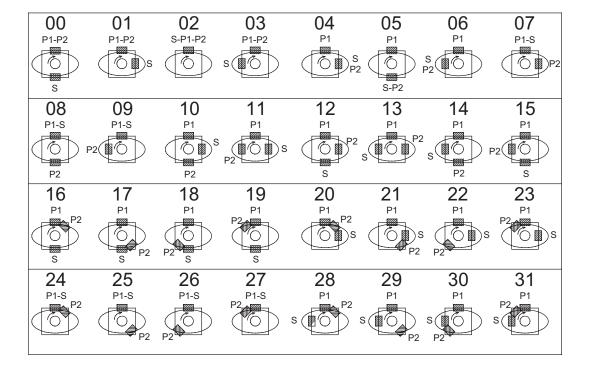
Porting combination

See Link to porting diagrams

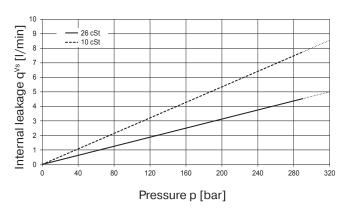
Direction of rotation (shaft end view)

R = Clockwise

L = Counter-clockwise



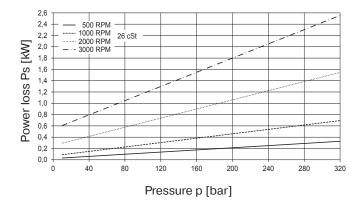
Porting diagrams for double pumps


T7GBB

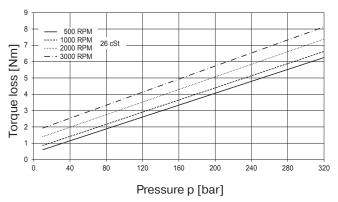
TECHNICAL DATA


T7GB E**

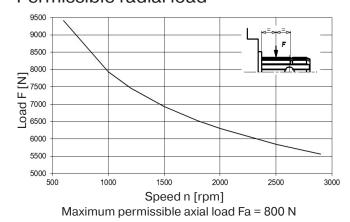
Internal leakage (Typical)


Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Noise level (Typical) - T7GB E10



*1m ISO 4412


Power loss hydromechanical (Typical)

Torque loss hydromechanical (Typical)

Permissible radial load

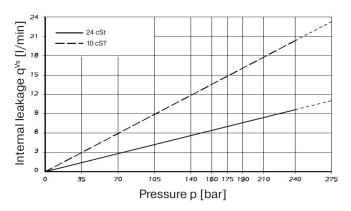
Pump information

Pump type: T7GB

Weight: 15.3 kg

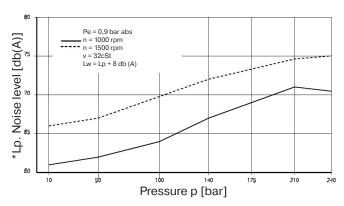
Moment of inertia: 9.1 Kgm² x 10⁻⁴

Input torque limit:

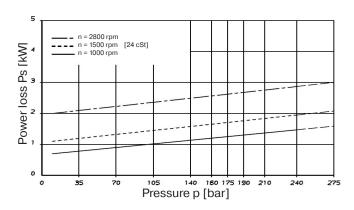

Shaft

Vi [cm³/rev] x p max.

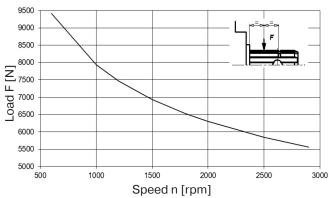
Shaft	Vi [cm³/rev] x p max. [bar]	Nm
6	24000	381


T7GC M**

Internal leakage (Typical)


Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Noise level (Typical) - T7GC M22



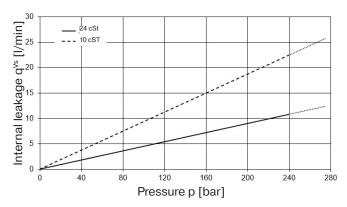
*1m ISO 4412

Power loss hydromechanical (Typical)

Permissible radial load

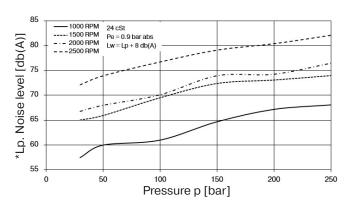
Maximum permissible axial load Fa = 800 N

Pump information

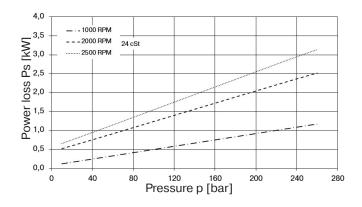

Pump type: T7GC Weight: 15.3 kg

Moment of inertia: 9.1 Kgm² x 10⁻⁴

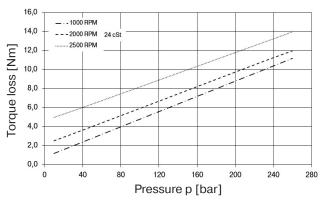
Shaft	Vi [cm³/rev] x p max. [bar]	Nm
6	24000	381


T7GC E**

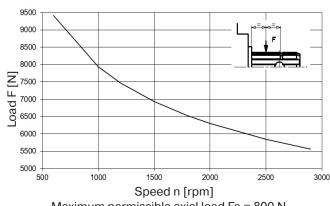
Internal leakage (Typical)


Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Noise level (Typical) - T7GC E25



*1m ISO 4412

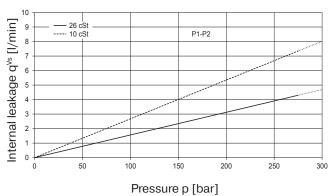

Power loss hydromechanical (Typical)

Torque loss hydromechanical (Typical)

Permissible radial load

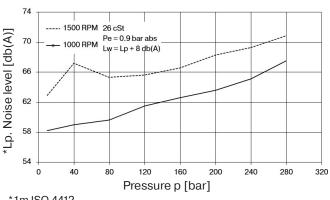
Maximum permissible axial load Fa = 800 N

Pump information

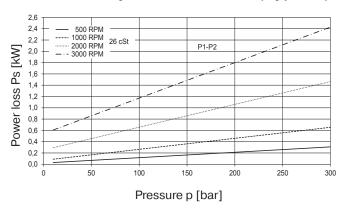

Pump type: T7GC Weight: 15.3 kg

Moment of inertia: 9.1 Kgm² x 10⁻⁴

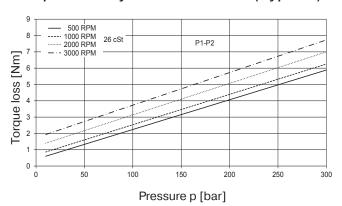
Shaft	Vi [cm³/rev] x p max. [bar]	Nm
6	24000	381


T7GBB E**

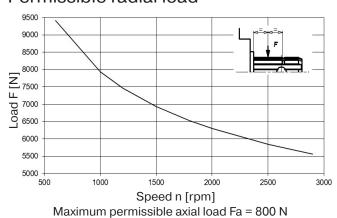
Internal leakage (Typical)


Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Noise level (Typical) - T7GBB E14 E14



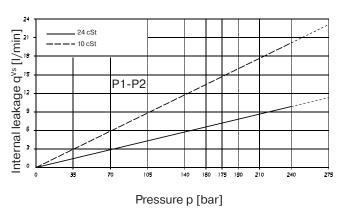
*1m ISO 4412


Power loss hydromechanical (Typical)

Torque loss hydromechanical (Typical)

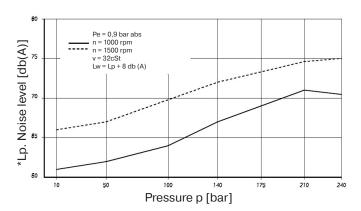
Permissible radial load

Pump information

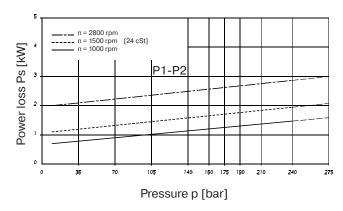

Pump type: T7GBB Weight: 25.6 kg

Moment of inertia: 15.9 Kgm² x 10⁻⁴

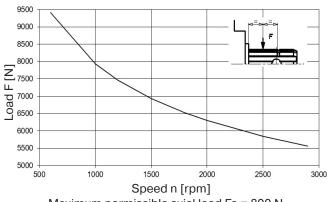
Shaft	Vi [cm³/rev] x p max. [bar]	Nm
6	43440	690


T7GCC M**

Internal leakage (Typical)


Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Noise level (Typical) - T7GCC M22 M22



*1m ISO 4412

Power loss hydromechanical (Typical)

Permissible radial load

Maximum permissible axial load Fa = 800 N

Pump information

Pump type: T7GCC Weight: 25.6 kg

Moment of inertia : 15.9 $Kgm^2 \times 10^{-4}$

Shaft	Vi [cm³/rev] x p max. [bar]	Nm
6	43440	690

CIRCUIT DESIGN

Pump selection example

To resolve

Volumetric displ. Available flow Input power V_{i} [cm³/rev.] Q_{eff} [l/min] P_{eff} [kW]

Performances required

 $\begin{array}{ccc} \text{Requested flow} & & \text{Q [l/min]} & 75 \\ \text{Speed} & & \text{n [RPM]} & 2000 \\ \text{Pressure} & & \text{p [bar]} & 200 \end{array}$

Routine:

1. First calculation $V_i = \frac{1000 \text{ Q}}{\text{n}}$

2. Choice V_i of pump immediately greater (see tabulation)

3. Theoretical flow of this pump

$$Q_{theo} = \frac{V_i \times n}{1000}$$

4. Find qvs leakage function of pressure q_{vs} = f(p) on curve at 10 or 24 cSt

5. Available flow $Q_{eff} = Q_{theo} - q_{Vs}$

6. Theoretical input power

$$P_{\text{theo}} = \frac{Q_{\text{theo}} \times p}{600}$$

7. Find Ps hydrodynamic power loss on curve

8. Calculation of necessary input power $P_{eff} = P_{theo} + Ps$

9. Results

Example:

$$V_i = \frac{1000 \times 70}{2000} = 37.5 \text{ cm}^3/\text{rev}.$$

T7GB E12, $V_i = 41 \text{ cm}^3/\text{rev}$.

$$Q_{theo} = \frac{41 \times 2000}{1000} = 82 l/min$$

T7GB (page **) : q_{vs} = 3 l/min at 200 bar, 26 cSt

$$Q_{eff} = 82 - 3 = 79 l/min$$

$$P_{theo} = \frac{79 \times 200}{600} = 26.35 \text{ kW}$$

T7GB (page **): Ps at 2000 RPM, 200 bar = 1.05 kW

These calculation steps must be followed for each application.

Start-up instructions

All Parker vane pumps are individually factory tested to provide the best quality & reliability. They are to be used within the design limits indicated in our documentation. Only qualified personnel who is competent and familiar with the installation and operation of hydraulic drives and has hydraulic circuits and hydraulic equipment knowledge is allowed to put the equipment into operation. Make sure to have all necessary documentation available and always conform yourself to the valid regulations (safety, electrical, environment...).

Rotation way and ports indication

The rotation way and ports orientation are viewed from the shaft end.

CW stands for clockwise = Right-hand rotation.
CCW stands for counter-clockwise = Left-hand rotation.

Pre-start checks

Before initial starting of the pump, the following checks should be made:

- a. Check the rotation of the power source to be sure the pump shaft will rotate in the direction indicated by the arrow on the pump nameplate.
- b. Check inlet and discharge lines to be sure all connections are tight and properly connected.
- c. Check fluid type, its cleanliness and level. Make sure it can freely reach the pump inlet.

Filling, air removing & priming

The pressure relief valve should be backed off to its minimum setting value so the pump is unloaded when started. Circuit priming and air bleed off have to be performed before resetting the pressure relief valve. For priming, a minimum pump shaft speed of 600 rpm is recommended. To prevent possible damage to the internal parts, the pump should never be started dry or without internal lubrication.

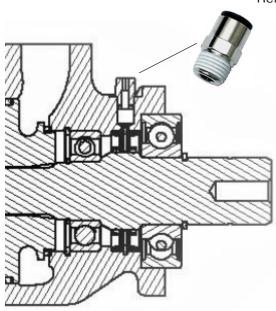
- Pump with positive head: allow the fluid to flow to the pump inlet, loosen the discharge port(s) fitting(s) until the fluid comes out and re-tighten the discharge line(s). Then start the pump which should prime quite instantly. Purge the air off the circuit, preferably using air bleed off valves or pressure test points. Let the pump discharge several minutes unloaded.
- Pump mounted above fluid level: fill the pump through outlet port(s) with suitable and clean fluid and start rotation in jog mode. Purge the air off the circuit, preferably using air bleed off valves or pressure test points. Let the pump discharge several minutes unloaded.

Notes

If the pump does not prime properly or pressure cannot be obtained within seconds, it should be shut down and conditions corrected. Refer to the machine/vehicle manufacturer instructions and pump catalogue.

Maintenance

The pump is self-lubricating and its preventive maintenance is limited to keeping the hydraulic fluid clean and maintaining its viscosity within the acceptable limits. Keep all fittings and screws tight. Do not operate at pressures or speeds in excess of the recommended limits. If the pump does not operate properly, check the troubleshooting chart before attempting to overhaul the unit. The pump is fully serviceable.


Sweep hole

All our T7G* pumps are delivered with a fitting mounted on the threaded hole between the 2 shaft seals.

The propose of this sweep hole is to detect a leakage from the pump or/and from wet gear box.

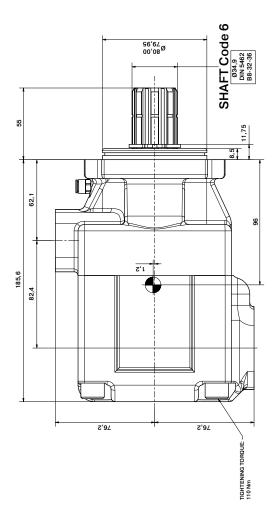
This fitting is plugged, we highly recommend to add a Polyurethane tubing (not provided) or similar to collect the leakage in case of issue with the shaft seals

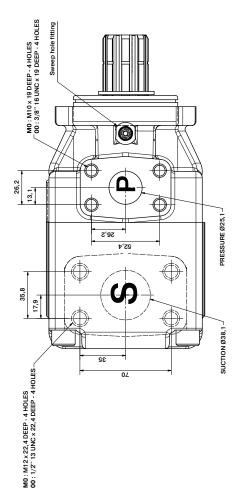
Example of compatible Polyurethane tubing: White crystal version recommended

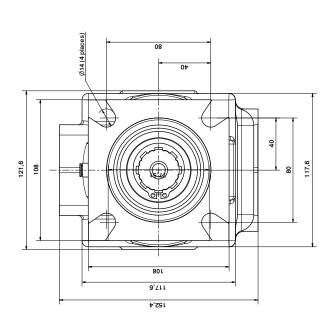
1025U...R Polyurethane (PU) Ether Tubing

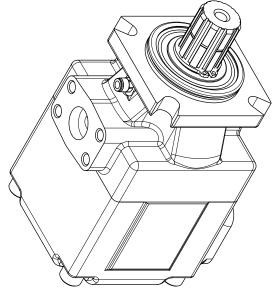
Tubepack® 25 m

ØD ext.	ØD int.	C R	•	E	Crystal Crystal	Crystal	Crystal	Crystal	Crystal	Kg
4	2.5	12	1025U04R01	1025U04R04	1025U04R08	1025U04R12	1025U04R13	1025U04R14	1025U04R17	0.310
5	3	13			1025U05R08					0.522
6	4	15	1025U06R01	1025U06R04	1025U06R08	1025U06R12	1025U06R13	1025U06R14	1025U06R17	0.591
8	5.5	20	1025U08R01	1025U08R04	1025U08R08	1025U08R12	1025U08R13	1025U08R14	1025U08R17	0.971
10	7	25	1025U10R01	1025U10R04	1025U10R08			1025U10R14		1.467
12	8	35	1025U12R01	1025U12R04	1025U12R08			1025U12R14		2.406
14	9.5	45		1025U14R04 95						2.421
16	11	45			1025U16R08 11					2.815

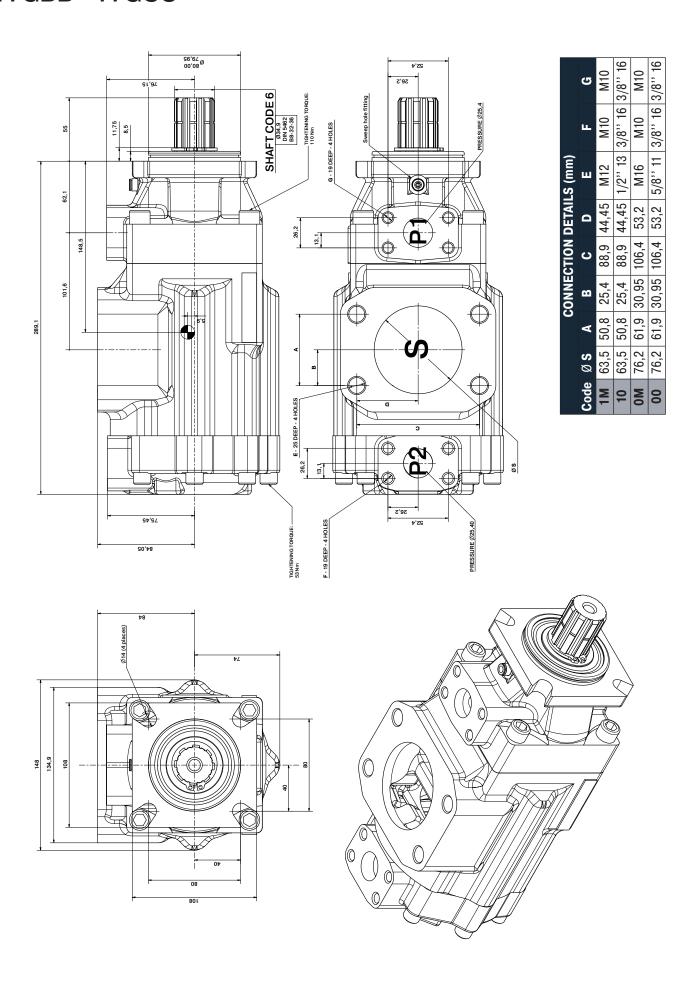

1100U ...R Polyurethane (PU) Ether Tubing


Tubepack® 100 m


ØD ext.	ØD int.	C R	•		Crystal Crystal	Crystal	Crystal	Crystal	Crystal	Kg
4	2.5	12	1100U04R01	1100U04R04	1100U04R08	1100U04R12	1100U04R13	1100U04R14	1100U04R17	1.092
6	4	15	1100U06R01	1100U06R04	1100U06R08	1100U06R12	1100U06R13	1100U06R14	1100U06R17	2.064
8	5.5	20	1100U08R01	1100U08R04	1100U08R08	1100U08R12	1100U08R13	1100U08R14	1100U08R17	3.610
10	7	25			1100U10R08			1100U10R14		6.109
12	8	35		1100U12R04	1100U12R08					8.610
14	9.5	45			1100U14R08 95					10.000
16	11	45			1100U16R08 11					12.176


DIMENSIONS DRAWINGS

T7GB - T7GC



T7GBB - T7GCC

Parker Hannifin Corporation

Motion Systems Group Europe

Parker Hannifin EMEA Sàrl European Headquarters
La Tuilière 6 Etoy

Switzerland CH-1163

www.parker.com

MSG30-0112-UK T7G_07.24

April 2025

Your Local Authorized Parker Distributor

© 2024 Parker Hannifin Corporation

