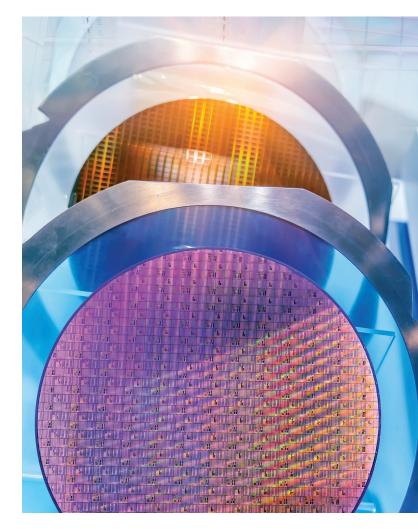
HF369-80

HiFluor Fluoroelastomer for Semiconductor Applications

Parker HiFluor Compound HF369-80 is an off white colored highly fluorinated, chemically resistant material that acts as a cost-effective replacement to FFKM in select Semiconductor processes. In applications such as etching, ashing, deposition, and gas transfer HF369-80 has comparable performance to competitive FFKMs. Incorporating HiFluor materials can significantly reduce the total cost of ownership of semiconductor manufacturing.


Recommended For:

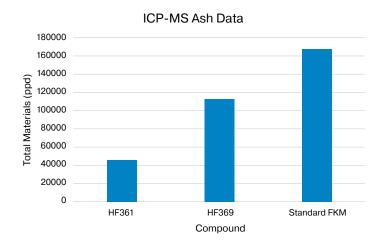
Outstanding chemical resistance, low outgassing, low particle generation, etch resistance, wet bench chemistries, applications where FFKM may be overengineered.

Recommended Temperature Range:

-15°F to 400°F (-26°C to 204°C)

Features & Benefits:

- High purity
- Very low particle generation and ion content
- Cost effective alternative to FFKM
- Good chemical/plasma resistance
- Improved cleanliness compared to general purpose fluorocarbon (FKM)
- Performance up to 204°C/400°F
- Products include 0-rings, molded shapes, and bonded product



HF369-80

Original Physical Properties	Test	Results
Hardness, Shore A, pts.	ASTM D2240	85
Tensile Strength, psi	ASTM D1414	1451
Ultimate Elongation, %	ASTM D1414	159
Modulus @ 100% Elongation, psi	ASTM D1414	897
Specific Gravity	ASTM D297	1.91
Compression Set	Test	Results
22 hrs @ 392°F (200°C)	ASTM D395	21
70 hrs @ 392°F (200°C)	Method B	37
168 hrs @ 392°F (200°C)		55
Compression Set	Test	Results
22 hrs @ 446°F (230°C)	ASTM D395	35
70 hrs @ 446°F (230°C)	Method B	60
168 hrs @ 446°F (230°C)		92
Chemical Compatibility	Test	Results
C ₄ H ₈ O (MEK), 70 hrs @ Room Temp	ASTM D471	
Hardness Change, pts.		23
Tensile Strength Change, psi		92
Ultimate Elongation Change, %		66
Volume Change, %		143
Heat Age	Test	Results
70 hrs @ 446°F (230°C)	ASTM D471	
Hardness change, pts.		1
Tensile Strength Change, psi		8
Ultimate Elongation Change, %		18

Purchaser use only. Reproduce only in full. Data pertains to items referenced only.

The recording of false, fictitious, or fraudulent statements or entries in this report may be punishable as a felony under federal law.

Parker Hannifin Corporation
O-Ring & Engineered Seals
Division

2360 Palumbo Drive Lexington, KY 40509 phone 859 269 2351 fax 859 335 5128 ordmailbox@parker.com www.parker.com/oes

HF369 OES 7023 3-2025

© 2025 Parker Hannifin Corporation

