

COMPOUND DATA SHEET

Parker O-Ring & Engineered Seals Division United States

MATERIAL REPORT

TITLE: General evaluation of Parker Hifluor compound HF355-65.

PURPOSE: Test compound HF355-65 for resistance to high and low

temperature extremes.

CONCLUSION: Parker's Hifluor compound HF355-65 offers excellent resilience and

stability over a wide range of temperature environments.

Temperature Range: -15 to 400°F

Recommended For: Oils and greases made from petroleum or synthetic hydrocarbon base stock, silicone fluids, acids, bases, alcohols, ozone and weathering, aromatic hydrocarbon fuels and solvents, chlorinated hydrocarbon solvents, aggressive polar solvents (MEK, acetone, etc.), automotive brake fluid, aircraft hydraulic fluids.

Not Recommended For: Fluorinated refrigerant gases, perfluorinated ether fluids, molten alkali metals.

Additional Approvals: USP VI, FDA

REPORT DATA

Compound: HF355-65

Original Physical Properties	ASTM Test	Results
Original Physical Properties Hardness, Shore A	<u>Method</u> D2240	(AS568-214) 67
Tensile Strength, psi	D1414	1173
Elongation at Break, %	D1414	262
Modulus @ 100% Elongation, psi	D1414	274
Specific Gravity	D297	1.94
Dry Heat Resistance		
70 Hrs. @ 257°F	D.474	4
Hardness Change, pts. Tensile Strength Change, %	D471 D471	+4 +5
Elongation Change, %	D471 D471	+1
Modulus Change, %	D471	+4
Weight loss, % max	D471	0
Compression Set		
22 Hrs. @ 347°F		
Loss of Original Deflection, %	D395 Method B	8
Compression Set 22 Hrs. @ 392°F		
Loss of Original Deflection, %	D395 Method B	12
Compression Set 168 Hrs. @ 347°F		
Loss of Original Deflection, %	D395 Method B	16
Compression Set 168 Hrs. @ 392°F		
Loss of Original Deflection	D395 Method B	40
Compression Set 168 Hrs. @ 446°F		
Loss of Original Deflection, %	D395 Method B	90
Low Temperature Retraction		
TR-10, °F	D1329	-5
TR-50, °F	D1329	+6
TR-70, °F	D1329	+9

Purchaser use only. Reproduce only in full. Data pertains to items referenced only. The recording of false, fictitious or fraudulent statements or entries on this report may be punishable as a felony under federal law.