
REFINERY - HYDROTREATING UNIT

FILTRATION & SEPARATION EQUIPMENT

REFINERY – HYDROTREATING UNIT

FILTRATION & SEPARATION EQUIPMENT

PROCESS UNIT

- Hydrotreating Unit (HTU)
- Hydro Desulfurization (HDS)
- Naphtha Hydrotreater (NHT)
- Distillate Hydrotreater (DHT)
- Black Oil or Heavy Oil Hvdrotreater (HDT)

CONTAMINANTS

- Metals
- Sulfur Compounds
- Nitrogen Compounds
- Oxygen Compounds

OBJECTIVES OF HYDROTREATING

- Removal of contaminant with minimal effect on boiling range of fuel
- Helps in the saturation of olefins and some aromatics
- Used to meet product quality, performance and environmental product regulations
- Improves and/or protects downstream processing and catalysts
- Plays a key role in improving downstream process and catalyst performance
- Can increase cetane rating of diesel

HYDROTREATING CATALYST

Catalyst Supports (Provides acid function)

- Amorphous
- Zeolite (Porous Aluminium oxide)

Base Metal (Metal Sulfide is the Active form)

- Ni-Mo (Nickel Molybdenum)
- Co-Mo (Cobalt Molybdenum)

Noble Metals (Strong Hydrogenation Function)

- Pd (Palladium)
- Pt (Platinum)

PROCESS DESCRIPTION

Commonly used as Feed Preparation Units for downstream Catalytic Processes, Hydrotreating Processes remove impurities such as sulfur and nitrogen from distillate fuels (naphtha, kerosene and diesel) by treating the feed with hydrogen at an elevated temperature and pressure in the presence of a catalyst. Hydrotreating has been extended in recent years to atmospheric residuals to reduce the sulfur and metal content of residuals for producing low sulfur fuel oils. The principal impurities removed by this unit are sulfur, nitrogen, oxygen, olefins, aromatics, halogens, and metals.

All Catalytic Processes such as CCR (Catalytic Reforming), HCU (Hydrocracker Unit), FCC (Fluid Catalytic Cracking), ISOM (Isomerization), ALKY (Alkylation) need the feed to be treated in a Hydrotreater.

KEY REACTIONS

Desulfurization (HDS): Conversion of organic sulfur compounds to hydrogen sulfide (H₂S) which can be easily removed in downstream amine units.

Denitrification (HDN): Conversion of organic nitrogen compounds to ammonia (NH_o) proceeds through aromatic saturation, then extraction.

Other Hydrotreating Reactions:

- Removal of organo metallic compounds. Metals are irreversible catalyst poison.
- Saturation of olefins and aromatics.
- Conversion of organic oxygen compounds to water. Water and oxygen can strip chloride off reforming catalyst and deactivate it, so it needs to be removed from the product stream.
- Conversion of organic halides to hydrogen halide. Halide ions can form NH₄Cl salt with NH₂ resulting in fouling/corrosion.

FEED TO THE UNIT

- Naphtha (Straight Run Naphtha, FCC Naphtha, HC Naphtha, Coker Naphtha) - acts as an Isom and Reformer feed pretreat
- Kerosene, Jet Fuel, Diesel, Heater Oil
- Vacuum Gas Oils (VGO)
- Atmospheric Gas Oils (AGO)
- Residual

RELIABILTY ISSUES

- Furnace and Exchanger Fouling
- Feed Quality high contamination
- Reactor Pressure Drop
- Catalyst Deactivation
- Effluent Exchanger Fouling and Corrosion (NH,CI, NH,HS)
- Tower Stripper Operation fouling and corrosion

RELIABILTY ISSUES EXPLAINED

Feed Quality: High contamination in the feed leads to catalyst deactivation. The feed contains substances which induce corrosion and need to be removed. A good feed quality, free of contamination, results in better catalyst yield and activity.

Furnace and Exchanger Fouling: Furnaces and exchangers can get fouled if the hydrocarbon stream is contaminated with scale, silica and rust particles. Furnace tube fouling leads to lower heat transfer in the convection zone and radiation zone. This then leads to lower feed temperature in the reactor, which affects the catalyst activity. In a furnace with fouled/choked tubes, to maintain high catalyst activity and optimum inlet feed temperature, higher temperature will be required which leads to high energy consumption. Higher temperature can also induce cracking and coking which is not desirable. Exchanger fouling which is caused by scale, silica, and rust leads to poor heat exchange which in turn leads to improper feed temperature. Exchanger fouling causes frequent shutdowns for tube bundle repairs and change outs, causing production losses and increased OPEX.

Catalyst Deactivation: Catalyst activity and yield depends on a lot of factors and one of them is temperature. A higher reactor temperature leads to catalyst deactivation. Fouling in the furnace and exchanger creates feed temperature imbalance which is responsible for either lower catalyst yields or reduced catalyst life.

Feed

Contaminated feed stocks foul heat exchangers, clog reactor nozzles, cause corrosion, reduce reactor efficiency and results in catalyst deactivation.

KEY ISSUES

Feed such as VGO, HCGO, AGO, diesel, and middle heavy distillate need to be water washed to take out the salts. Otherwise nitrogen, which gets converted to NH₂ in the reactor, reacts with the salts to form NH, Cl. This can cause downstream catalyst issues and exchanger fouling. The washed feed needs to be free of water as water fouls critical downstream equipment.

Hydrogen

The HDS reaction needs hydrogen. The hydrogen is either added as fresh make-up hydrogen or hydrogen produced as a byproduct in the CCR unit is used. The hydrogen, which is recycled, contains particulates, trace liquids and aerosols. If not treated, this creates issues with compressor performance and also causes reactor catalyst bed and tower fouling.

Acid Gas/Sour Gas

The acid gas, which is mainly sour gas, contains hydrocarbon liquid as carryover. This can create foaming issues in the downstream amine unit.

Reactor Fouling

Heavily contaminated feed stock contains scale, rust and corrosion products. It deposits these contaminants, mixed with hydrocarbon, on the reactor bottom. This is a major maintenance issue, and in some cases heavy scraping is required to clean the reactor.

Tower Stripper Fouling

The stripping column separates the light gases from the hydrotreater products. Contaminated inlet feed to the stripping column impacts the separation and hence leads to poor quality of hydrotreated product. The effluent exchanger or reboiler fouling not only creates limited heat transfer but in order to maintain the same reboiler temperature, more energy is consumed. Fouling causes shutdowns and maintenance leading to production losses.

Wash water is used to take out salts so as to prevent the formation of NH, Cl and NH, HS. This wash water is then designated as sour water. Water is also produced in the reactor as a result of the conversion of organic oxygen compounds. The sour water is separated in a separator. If there is any hydrocarbon carryover along with the sour water it leads to fouling of the sour water stripper column. The hydrotreated product needs to be free of water before it is fed to downstream catalytic processes, like a reformer, because the presence of water acts as a catalyst poison.

1 Liquid Filter

FEED FILTRATION

PECO, XtreamPure®, Series 55X filter with 6" diameter XP cartridges

- Removes corrosion products and particulates
- Assists in maintaining reactor pressure drop
- Prevents clogged reactor nozzles • Prevents particulate deposits in reactor bed
- Prolongs catalyst life and vield

2 Liquid-Liquid Phase Coalescer

PECO. XtreamPhase®. Series 110H coalescer with TLPC or PLPC cartridges

• Protects reactor catalyst fouling by removing water down to 8-10 ppm in the feed stream

FUEL GAS FILTRATION

Gas Filter-Coalescer

PECO, PEACH Gemini PuraSep® 2, Series GEM2 horizontal coalescer with PGC cartridges

- High efficiency 0.3 micron coalescer
- Removes solid and liquid contaminants
- Protects burner tips

HYDROGEN FILTRATION

Gas Filter-Coalescer

PECO, PEACH Gemini PuraSep® 2, Series GEM2 horizontal coalescer with PGC cartridges • High efficiency 0.3 micron coalescer

- Protects compressor to minimize downtime and maintenance costs
- Removes particulates, trace hydrocarbon liquids and aerosols

5 Gas Coalescer

PECO, Spartan PuraSep®, Series 77V vertical coalescer with NGGC cartridges

- High efficiency 0.3 micron liquid coalescing
- Prevents lube oil carryover in the compressed hydrogen to the reactor
- Prolongs catalyst life and yield

ACID GAS TO AMINE UNIT

6 Gas Filter-Coalescer

PECO, PEACH Gemini PuraSep® 2, Series GEM2 horizontal coalescer with PGC cartridges

- High efficiency 0.3 micron coalescer • Removes particulate and liquid carryover
- from the acid gas Helps protect amine absorber/contactor

Reduces amine foaming and contamination

STRIPPER FEED FILTRATION

FILTRATION SOLUTIONS

Liquid-Liquid Phase Coalescer

PECO, XtreamPhase®, Series 110H coalescer with TLPC or PLPC cartridges

- Protects stripper fouling by removing water carryover down to 8-10 ppm
- Helps to maintain stripper efficiency

SOUR WATER FILTRATION

8 Liquid-Liquid Phase Coalescer

PECO, XtreamPhase®, Series 110HR coalescer with TLPC or PLPC cartridges

- Removes particulates in the sour water stream • Removes hydrocarbon (oil) carryover down
- to 8-10 ppm in the sour water stream • Prevents fouling in downstream equipment
- such as Sour Water Stripper and Reboilers Helps maintain good water quality and steam balance
- Reduces loss of water or requirement of fresh water make-up

Typically all sour water is taken to a Sour Water Treatment System which includes a Liquid Filter and Liquid-Liquid Phase Coalescer. A Liquid-Liquid Phase Coalescer is shown in the diagram for reference. For particulate removal it is recommended to include a PECO. XtreamPure®, Series 55X filter with 6" diameter XP cartridges (not shown) before the Liquid-Liquid Phase Coalescer.

PRODUCT FILTRATION

Liquid Filter

9 PECO, XtreamPure®, Series 55X filter with 6" diameter XP cartridges

Liquid-Liquid Phase Coalescer

PECO, XtreamPhase®, Series 110H coalescer with TLPC or PLPC cartridges

- Removes particulates in product stream
- Removes sour water carryover down to 8-10 ppm from the product stream

The product from the hydrotreater becomes a feed for various downstream processes which have catalyst that is highly sensitive to water. Removal of water helps in protecting the downstream catalyst from getting poisoned. For example, in an Isom unit, 1.6 lbs of water can kill 100 lbs of catalyst. Hydrotreater product such as diesel also needs removal of water, as water in diesel decreases the product quality (considered off-spec) and prevents the refinery from selling it.