

 Application Note

 Copyright 2019 Parker SSD Drives, a division of Parker Hannifin Ltd.
All rights strictly reserved. No part of this document may be stored in a retrieval system, or transmitted in any
form or by any means to persons not employed by a Parker SSD Drives company without written permission
from Parker SSD Drives, a division of Parker Hannifin Ltd . Although every effort has been taken to ensure the
accuracy of this document it may be necessary, without notice, to make amendments or correct omissions.
Parker SSD Drives cannot accept responsibility for damage, injury, or expenses resulting therefrom.

i

WARRANTY
Parker SSD Drives warrants the goods against defects in design, materials and workmanship for the period of 12

months from the date of delivery on the terms detailed in Parker SSD Drives Standard Conditions of Sale
IA058393C.

Parker SSD Drives reserves the right to change the content and product specification without notice.

IA387648C225 Issue

 C012 User Web Pages

HA502487C012 Issue B

 AC30 Vx.18.x onwards

Requirements

Intended Users
This Application Note is to be made available to all persons who are required to install,
configure or service equipment described herein, or any other associated operation.

The information given is intended to enable the user to obtain maximum benefit from the
equipment.

Application Area
The equipment described is intended for industrial motor speed control utilising AC induction or
AC synchronous machines.

Personnel
Installation, operation and maintenance of the equipment should be carried out by qualified
personnel. A qualified person is someone who is technically competent and familiar with all
safety information and established safety practices; with the installation process, operation and
maintenance of this equipment; and with all the hazards involved.

Hazards
Refer to the Safety Information given at the front of the Product Manual supplied with every
Parker SSD Drives product.

 ii

 1

C012 USER WEB PAGES
Abstract
This application note explains how to create user web pages on an AC30 drive and provides some examples.

Pre-Requisite
The pre-requisites are an AC30 drive, SD card and a text editor such as Notepad++. Some basic knowledge of creating
web pages would be needed.

Introduction
An HTTP web server is built into the AC30. Several built-in web pages are available by entering the drive’s IP address
into a web browser. The web pages including a Summary page and a Parameters page. The Parameters page allows the
user to view and modify drive parameters.

A user may also create web pages by placing the required web files onto an SD card and/or, for AC30P and derivatives,
onto the built-in flash file system.

An AC30 drive IP address of 192.168.1.10 is used in examples throughout this document.

The File System
A web browser accesses web pages from the AC30 web server in the form of files that are stored on three files systems
within the AC30. These are the SD card, the flash file system (for AC30P and derivatives only) and a built-in virtual
file system. A browser may access any of these files.

A user may add or remove files to the SD card or flash file system by using the AC30 Drive Services feature in PDQ/PDD
found under the menu File and Source Upload… Alternatively, the SD card files may be modified using an SD card
reader on a PC. Files may be placed in folders if required. The built-in virtual files cannot be modified.

Volumes
The three file systems are referenced explicitly using the following volumes. If the volume is not reference explicitly then
the order the file will be searched is that shown in the Precedence column.

Supported on Volume Letter File System Precedence
AC30V/P a: SD Card 1st
AC30P c: Flash file system 2nd
AC30V/P z: Virtual file system 3rd

 2

File Types
Any type of file can be accessed from the server. However, the server will add extra information to certain files to help the
browser render the file.

File extension File type
html, htm HTML files
shtml, shtm HTML files with SSI
css Cascading style sheet files
txt Simple text files
jpg, gif, png Image files
js Javascript files
json JSON files
xml XML files
mp3 MP3 files
gz GZIP files
act Action files (virtual file system only) used for form processing
Other All other files are processed as attachments

Accessing Files
To access a file type from a browser, in the address bar type in the IP address of the drive followed by the filename
complete with folder path. For example, to access file hello.txt that is in the root folder type:
192.168.1.10/hello.txt

As the filename does not specify the volume, the web server check all volumes until it is found in order of SD card, flash
files and virtual files. Assuming the file is not on the SD card or flash file system then the file on the virtual file system
will be accessed and the browser will display the contents:
Hello

Alternatively, the file could have been accessed by:
192.168.1.10/z:/hello.txt

In this case, only the virtual files are searched. Note that this is also more efficient.

Index File
If no file is specified when the IP address is entered into the browser, the file index.shtml found in the root folder will be
assumed and loaded. All volumes will be checked as specified in the Volumes section. This allows a user to redirect to
web pages on the SD card or flash system rather than displaying the built-in web pages simply by typing in the IP address

Restricted Files
Files on any of the three volumes that are store under the folder /restricted are password protected.

If the parameter 0944 Web Access is set to LIMITED, then files in the folder cannot be accessed.

If the parameter 0944 Web Access is set to FULL and parameter 0946 Web Password is set, then the browser will request
a case-sensitive username and password. The username is ac30.

Note the password protection uses Basic Authentication which, is the simplest form of web protection. This will protect
against casual access only as the password can easily be intercepted.

 3

Virtual Files
 Some of the web files stored on the virtual file system are described below.

Filename Description

/index.shtml Index file used when no other is specified in the URL. This will redirect to the
“Summary” web page file.

/summary.shtml “Summary” web page
/restricted/parameters.shtml “Parameters” web page
/parameters_ro.html Read-only “Parameters” web page
/services.shtml “Services” web page
/logo.gif Company logo image
/hello.txt Simple text file that displays “Hello”
/dir.txt Displays the contents of the folder on the SD card or flash file system as a text file.

If an optional query string is added of field-value pairs using the g tags, then:
• g0 specifies the volume of either a or c. If it is not specified, then the SD card is

assumed.
• g1 specifies the path. If it is not specified, then the root folder is assumed.

/menus.xml Displays all parameter menus and parameter names and data type in XML format.
/menus.json Displays all parameter menus and parameter names and data type in JSON format.
/get_params.json Used to get the current value and other attributes of the parameters specified by a query

string of field-value pairs using the n tags (n0, n1, etc). The content is returned in JSON
format.

The data returned depends on the offset added to the parameter number in the n tag. See
the table below.

Returned parameter attributes for get_params.json based on the PNO offset passed to the web server.

Offset PNO
Value Enum

Numeric
Value

English
Enum
String

Name List of
Enum
strings

Units Type Time-
stamp

Write
Qualifier

0      

10000     

20000      

Other Reserved

 4

Parameter Access
All AC30 inverter parameters may be accessed via the web server. Parameter attributes may be read using server side
includes (SSI) and parameter values may be written via an HTML form.

The table below describes the tags used to reference parameters and their attributes. Note the tags are case sensitive.

When the tag is used to get the attribute when using the #echo command, the tag is followed by the PNO and an optional
dot (.) followed by an index value.

Parameter tag Get/Set Attribute description

C Get Returns “checked” if the Boolean parameter has a value of TRUE or if the enumerated
parameter has a value that matches the index.

E Get Returns an error string after attempting to set the parameter to an invalid value. If there
is no error an empty string will be returned.

H Set Used in a form using a checkbox input as a hidden input when setting Boolean
parameters.

N Get Enumerated string of an enumerated, Boolean or bit-string parameter referenced by the
index.

P Get Parameter’s name
S Get Returns “selected” if the Boolean or enumerated parameter has a value that matches the

 U Get Parameter’s units
V Get/Set Value of a parameter.

The table below describes special tags do not access parameters.

Special tag Get/Set Description
R Get/Set Reserved attribute
X Get Returns internal AC30 strings
f Set Used to tell the server which filename to load after a form has been submitted
g Set Used to pass strings into a password ‘form’ or ‘disk’ form as field-value pairs (g0 … g9)
n Set Used to pass numeric values to the web server as field-value pairs (n0 … n29)

Server Side Includes (SSI)
Server Side Includes (SSI) allows a web server to modify an HTML file, that it has access to, as it is sending it to the client
browser. The HTML file has a special filename extension: SHTML or SHTM. If a server supports SSI, then it knows that
SHTML files are to be parsed before being sent to the browser.

SSI consists of several commands, starting with the # character, that are enclosed within an HTML comment so that if a
web server does not support SSI, the browser will simply not show what is within the comment.

SSI commands detected within the file are replaced with new content depending on the command. For the AC30 two
commands are available: #echo and #include. Currently #include is not supported for SD card or flash files.

#echo command
The #echo command is used on the AC30 only to display parameter attributes and some other special attributes described
in the tables above. Standard environment variables are not supported.

An example of using the echo commands within an SHTML file is shown below. On load of the web page, the commands
will be replaced with the parameter name (P961) and the parameter value (V961) for parameter 0961 Drive Name. Note
the format must be exactly as shown with a single space between echo and var, and a single space between the last quote
(“) and the closing comment (-->).
<html>
 <body>
 <!--#echo var="P961" --> is <!--#echo var="V961" -->

 </body>
</html>

Browser Output:
Drive Name is Drive 1

 5

Forms
Several built-in actions may be used by an HTML form to process data. They allow tags to be modified as describe in the
section Parameter Access.

These actions are files within the virtual file system. The file should be specified in the form action attribute.

Action file Description
/restricted/parameters.act Allows AC30 parameters to be modified. All settable tags are allowed.
/password.act Allows a password to be changed.
/disk.act Disk actions including file delete, file rename and make directory.
/generic.act Only allows f, g and n tags to be set.
All other filenames Any other filename used will be processed in the same way as generic.act.

After a form has been submitted the page will be refreshed using this filename. This
will be overridden if the f tag has been included in the form.

The form method attribute can be POST or GET, but POST is normal for forms.

To refresh the web page after a form is submitted, the HTML input element of type hidden may be used with the name
attribute set to the f tag. The value attribute is set to the refresh filename – the full path must be specified. Note if a
refresh filename is used that is in the /restricted folder then either the action or the HTML file in which the form is held
must also be in the /restricted folder.

Changing Parameters
AC30 parameters may be changed using an HTML form.

The form action attribute should be set to the built-in action parameters.act stored in the folder /restricted in the virtual
file system. As this action is in the /restricted folder it can be password protected.

Example 1 – Changing a numeric or string parameter
The example file (form1.shtml) is given below mixed with SSI. This example can be used with most parameters.

• The input element with attribute type set to text allows the user to enter text. The name attribute is set to the
parameter to be changed using the V tag. The value attribute can be set to the initial value to be shown in the input
box. This is done by using the #echo commands to read the current value and units of the parameter.

• E486 will show an error if the last data entered is not valid for the parameter.

<html>
 <body>
 Parameter 0486: <!--#echo var="P486" -->

 <form action="/restricted/parameters.act" method="post">
 <input type="text" name="V486" value="<!--#echo var="V486" --> <!--#echo var="U486" -->"/>
 <input type="hidden" name="f" value="/form1.shtml"/>
 <input type="submit" value="set"/> <!--#echo var="E486" -->
 </form>
 </body>
</html>

Browser Output:

 6

Example 2 – Changing a Boolean parameter using a checkbox
The example file (form2.shtml) is given below with mixed with SSI. This allows a Boolean-type parameter to be changed
using a checkbox.

• The input element with type attribute set to checkbox must have the value attribute set to 1. The #echo command
with attribute C is included within the input element so that when the page is loaded the current state of the parameter
is reflected by the checkbox.

• Due to the characteristic of a checkbox, if the checkbox is not set then no value is submitted. To overcome this an
input element with the type attribute set to hidden can be used with the name attribute set to the H tag and the value
attribute set to 0. This hidden input must occur before the checkbox input.

<html>
 <body>
 Parameter 0023: <!--#echo var="P23" -->

 <form action="/restricted/parameters.act" method="post">
 <input type="hidden" name="H23" value="0"/>
 <input type="checkbox" name="V23" value="1" <!--#echo var="C23" -->/>
 <input type="hidden" name="f" value="/form2.shtml"/>
 <input type="submit" value="set"/>
 </form>
 </body>
</html>

Browser Output:

Example 3 – Changing an enumerated parameter
The example file (form3.shtml) is given below with mixed with SSI. This allows enumerated-type parameters to be
changed from a drop-down list.

• The select element is used with the option elements.
• The #echo command with the S tag is included within the option element so that when the page is loaded the current

value of the parameter is reflected in the selection. The #echo command N tag is to provide the enumerated string for
each option.

<html>
 <body>
 Parameter 0511: <!--#echo var="P511" -->

 <form action="/restricted/parameters.act" method="post">
 <select name="V511">
 <option value="0" <!--#echo var="S511.0" -->><!--#echo var="N511.0" --></option>
 <option value="1" <!--#echo var="S511.1" -->><!--#echo var="N511.1" --></option>
 <option value="2" <!--#echo var="S511.2" -->><!--#echo var="N511.2" --></option>
 </select>
 <input type="hidden" name="f" value="/form3.shtml"/>
 <input type="submit" value="set"/>
 </form>
 </body>
</html>

Browser Output:

 7

Changing Passwords
AC30 password parameters may be changed using an HTML form. Currently only string password parameters can be
changed.

The form action attribute should be set to the built-in action password.act stored in the root in the virtual file system.

The following g tags are used to pass information to the web server:
• g0 – the parameter number of the password parameter
• g1 – the old password requested from the user
• g2 – the new password requested from the user
• g3 – the confirmed password requested from the user

The following E tags return status / error information after the form is submitted:
• E5001 – Wrong password
• E5002 – String too long
• E5003 – Mismatched password
• E5004 – Password unchanged
• E5005 – Password changed

Example
The example file (password.shtml) is given below with mixed with SSI.
<html>
 <body>
 Parameter 0946: <!--#echo var="P946" -->
 <form action="/password.act" method="post">
 <input type="hidden" name="f" value="/password.shtml"/>
 <input type="hidden" name="g0" value="946"/>
 <table>
 <tr>
 <td>Old password: </td>
 <td><input type="password" name="g1"/></td>
 <td style="color: red"><!--#echo var="E5001" --></td>
 </tr>
 <tr>
 <td>New password: </td>
 <td><input type="password" name="g2"/></td>
 <td style="color: red"><!--#echo var="E5002" --><!--#echo var="E5004" --></td>
 </tr>
 <tr>
 <td>Confirm password: </td>
 <td><input type="password" name="g3"/></td>
 <td style="color: red"><!--#echo var="E5003" --></td>
 </tr>
 <tr>
 <td></td>
 <td align="right"><input type="submit" value="Change"/></td>
 <td style="color: green" ><!--#echo var="E5005" --></td>
 </tr>
 </table>
 </form>
 </body>
</html>

Browser Output:

 8

Disk Services
Disk services are available using the action disk.act. Note that this is only available on TCP port 8080 and is not actually
intended to be used within forms. However, it could be used with AJAX.

The following g tags are used as field-value pairs to pass information to the web server:

Disk volume Command First filename Second filename
g0 g1 g2 g3

a (sd card)
c (flash file system)

ren (rename) old filename new filename
del (delete) filename -
md (make directory) directory name -

c (flash file system) format - -

The response content from the server is either “DONE” or “FAILED”.

Style Sheets, JavaScript and AJAX
Style sheets and JavaScript may be inline, embedded within the HTML file or included as an external file.

Style sheet
An embedded style sheet is defined within the <style> element within the <head> section.

External style sheet files are included using the <link> element within the <head> section:
<head>
 <link rel="stylesheet" type="text/css" href="my_style_sheet.css">
</head>

JavaScript
Embedded JavaScript is defined within the <script> element within the <head> or <body> section.

External JavaScript files are included using the <script> element within the <head> or <body> section
<script src="my_javascript.js"></script>

AJAX
Modern browsers have the built-in XMLHttpRequest JavaScript object that allows data to be requested by a browser from
a server asynchronously. This allows a web page to be updated without having to reload the page.

The JSON file get_params.json has been provided in the AC30 virtual file system that returns the value and other
attributes of requested parameters and can be used with the XMLHttpRequest object.

Cross-Origin Resource Sharing (CORS) is possible. For example, the web files may be placed on one AC30 (or a PC)
and the HTTP request made to a different AC30.

Example
The following example demonstrates the use of the XMLHttpRequest object. It consists of an HTML and a JavaScript file.
The value of two AC30 parameters (1139 Control Board Up Time and 1733 Time Since Power-On) are displayed in the
browser and continually update at a rate of 250ms.

For the XMLHttpRequest, as the GET method is used in the open() function, the parameter PNOs are passed via the URL.
However the POST method could be used and the PNOs placed in the content of the send() function. Either way, the
parameters are added as a query string composed of field-value pairs separated by &, i.e. n0=1139&n1=1733.

The returned data is in JSON format. The JSON.parse() function creates an array of all the parameters requested. In this
case as there are two parameters the array size is 2. The attributes of the parameters are available within each element of
the array, such as the value attribute.

Timeout functions are used to repeat the request every 250ms, to check for a loss of communications and attempt a re-
request if communications are lost.

If the file are placed, for example, on a PC using cross-origin resource sharing then the open() function should specify the
full path, i.e. http://192.168.1.10/z:/get_params.json?...

 9

HTML file (ajax.html)
<!-- HTML page demonstrating AJAX
 Parameter 1139 Control Board Up Time
 Parameter 1733 Time Since Power-On -->
<html>
 <head>
 <script src="ajax.js"></script>
 </head>
 <body onLoad="loadFunc(1139, 1733)">
 <div id="param1"></div>

 <div id="param2"></div>

 </body>
</html>

JavaScript file (ajax.js)
/*
 AJAX Example.
 Asynchronous request of AC30 parameters at a rate of 250ms.
 Values returned from the server are used to modify the HTML page.
 Includes a timeout and retry function if communications are lost.
*/

/* Global variables */
var xmlhttp;
var t;
var pno1, pno2;

/* Page load function called in ajax.html */
function loadFunc(p1, p2){
 if (window.XMLHttpRequest) {
 xmlhttp=new XMLHttpRequest();
 xmlhttp.abort();
 pno1 = p1;
 pno2 = p2;
 httpRequest();
 }
} // loadFunc()

/* HTTP request and response function */
function httpRequest(){
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 var obj=JSON.parse(xmlhttp.responseText);
 var value1 = obj.parameters[0].value;
 var value2 = obj.parameters[1].value;
 setElements(value1, value2)
 setTimeout("httpRequest()", 250);
 clearTimeout(t);
 }
 }

 xmlhttp.open('GET',"/z:/get_params.json?n0="+pno1+"&n1="+pno2, true);
 xmlhttp.send(null);
 t = setTimeout("timedOut()",4000);
} // httpRequest()

/* Timeout function if HTTP request fails to respond */
function timedOut(){
 setElements("---", "---")
 xmlhttp.abort();
 setTimeout("httpRequest()", 3000);
} // timedOut

/* Modifies the elements in ajax.html */
function setElements(value1, value2) {
 document.getElementById("param1").innerHTML = "PNO " + pno1 + " is " + value1;
 document.getElementById("param2").innerHTML = "PNO " + pno2 + " is " + value2;
} // setElements()

Browser Output:

	C012 User Web Pages
	Abstract
	Pre-Requisite
	Introduction
	The File System
	Volumes
	File Types
	Accessing Files
	Index File
	Restricted Files
	Virtual Files

	Parameter Access
	Server Side Includes (SSI)
	#echo command

	Forms
	Changing Parameters
	Example 1 – Changing a numeric or string parameter
	Example 2 – Changing a Boolean parameter using a checkbox
	Example 3 – Changing an enumerated parameter

	Changing Passwords
	Example

	Disk Services

	Style Sheets, JavaScript and AJAX
	Style sheet
	JavaScript
	AJAX
	Example

