


# **Servomotors**

# **NX Series**

## **Technical Manual**

**PVD 3663** 







#### EU DECLARATION OF CONFORMITY

We,

#### Parker Hannifin Manufacturing France SAS

Electric Motion & Pneumatic Division
Etablissement de Longvic
4 Boulevard Eiffel - C\$40090
21604 LONGVIC Cedex - France

manufacturer, with brand name Parker, declare under our sole responsibility that the products

#### BRUSHLESS SERVOMOTORS TYPE NX1 / NX2 / NX3 / NX4 / NX6 / NX8

satisfy the arrangements of the directives :

Directive 2014/35/EU: "Low Voltage Directive", LVD

Directive 2011/65/EU + delegated Directive (EU) 2015/863: RoH\$ 3 "Restriction of Hazardous

Substances"

Directive 2014/30/EU: "Electromagnetic Compatibility", EMC

and meet standards or normative document according to :

IEC 60034-1:2017: Rotating electrical machines - Part 1: Rating and performance.

IEC 60034-5:2020 : Rotating electrical machines - Part 5 : Degrees of protection provided by the

integral design of rotating electrical machines (IP code) - Classification.

IEC 60204-1:2016 : Safety of machinery – Electrical equipment of machines – Part 1 : General requirements.

The product itself is not impacted by the modifications made on the latest directives.

The undersigned certify that the above mentioned model is procured in accordance with the above directives and standards.

Further information:

SERVOMOTORS shall be mounted on a mechanical support providing good heat conduction and not exceeding 40° C in the vicinity of the motor flange.

The product must be installed in accordance with the instructions and recommendations contained in the operating instructions supplied with the product.

 NX1 C.E. Marking : October 2004
 NX4 C.E. Marking : March 15th 2000

 NX2 C.E. Marking : November 2004
 NX6 C.E. Marking : March 27th 2000

 NX3 C.E. Marking : September 27th 2001
 NX8 C.E. Marking : December 23th 2003

Longvic, June 11th 2021 In the name of Parker R. WENDLING

Business Unit Manager
Raphael Digital unterschriet

Ref : DCE-NX-001rev3 Raphael Wendling

Digital unterschrieben von Raphael Wendling Datum: 2021.06.14 14:49:49 +02:00\*



### Compliance with «UL» standards

### CERTIFICATE OF COMPLIANCE

Certificate Number Report Reference Issue Date 20151001-E242959 E242959-20060112 2015-OCTOBER-01

Issued to:

PARKER HANNIFIN MANUFACTURING FRANCE SAS

ESTABLISHMENT LONGVIC

4 Bld EIFFEL

21600 LONGVIC FRANCE

This is to certify that representative samples of

COMPONENT - INCOMPLETE ROTATING MACHINES

AND ROTATING MACHINE PARTS

COMPONENT - SERVO AND STEPPER MOTORS

Brushless servo motor - Models NX 110, NX205, NX 210 followed by A; followed by A through Z, followed A through Z, followed by R or B, followed by code 1,2,3,4,7 followed by code 0 through 5 or A through F, followed by code 00

through 99

Have been investigated by UL in accordance with the

Standard(s) indicated on this Certificate.

Standard(s) for Safety:

UL 1004-1, Rotating Electrical Machines - General

Requirements

C22.2 No. 100-04, Motors and Generators

Additional Information:

See the UL Online Certifications Directory at www.ul.com/database for additional information

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL LLC.

Look for the UL Certification Mark on the product.

Bambles

Bruce Mahrenholz, Director North American Certification Program

OF FFG

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/





### Compliance with «UL» standards

### CERTIFICATE OF COMPLIANCE

Certificate Number 20151001-E242959 Report Reference

E242959-20140618

Issue Date 2015-OCTOBER-01

PARKER HANNIFIN MANUFACTURING FRANCE SAS Issued to:

ESTABLISHMENT LONGVIC

4 Bld EIFFEL

21600 LONGVIC FRANCE

This is to certify that representative samples of COMPONENT - INCOMPLETE ROTATING MACHINES

AND ROTATING MACHINE PARTS

COMPONENT - SERVO AND STEPPER MOTORS

See Addendum Page

Have been investigated by UL in accordance with the

Standard(s) indicated on this Certificate.

Standard(s) for Safety: UL 1004-1, Rotating Electrical Machines - General

Requirements

UL 1004-6, Servo and Stepper Motors C22.2 No. 100-04, Motors and Generators

Additional Information: See the UL Online Certifications Directory at

www.ul.com/database for additional information

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL LLC.

Look for the UL Certification Mark on the product.



## **Table of Content**

| INTR  | RODUCTION                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1.  | Purpose and intended audience                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.2.  | Safety                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.2.2 | General Safety Rules                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PRO   | DUCT DESCRIPTION                                                                                                                                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Product Code                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TEC   | LINICAL DATA                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Thermal equivalent torque (rms torque)                                                                                                                                                                                                           | ۱ے۔<br>1 <i>۸</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Drive selection                                                                                                                                                                                                                                  | 14<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | <b>3</b>                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | <b>5</b>                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Temperature measurement with KTY sensors:                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.8.  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 1.1. 1.2. 1.2.1 1.2.2 PRO 2.1. 2.2.3. 2.4. 2.5. TEC 3.1. 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2. 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.1 3.3.3 3.3.4 3.3.5 3.5.1 3.6.6 3.6.1 3.6.2 3.6.3 3.6.3 3.6.3 3.6.3 3.6.3 3.7.1 3.7.2 3.8. | 1.2.1. Principle 1.2.2. General Safety Rules  PRODUCT DESCRIPTION 2.1. Quick URL. 2.2. Overview 2.3. Applications 2.4. General Technical Data 2.5. Product Code.  TECHNICAL DATA 3.1. Motor selection 3.1.1. NX standard atmospheric conditions. 3.1.2. Altitude derating. 3.1.3. Temperature derating. 3.1.4. Thermal equivalent torque (rms torque) 3.1.5. Drive selection 3.1.6. Current limitation at stall conditions (i.e. speed < 3 rpm) 3.1.7. Peak current limitations 3.2. NX Characteristics: Torque, speed, current, power. 3.2.1. NX datas – Mains voltage 230V 3.2.2. NX datas – Mains voltage 230V 3.2.3. Purther Data 3.2.4. Efficiency curves. 3.2.6. Time constants of the motor. 3.2.7. Speed ripple. 3.2.8. Cogging torque 3.2.9. Rated data according to rated voltage variation. 3.2.10. Voltage withstand characteristics of NX series 3.3. Dimension drawings. 3.3. NX6 3.3.1. NX3 3.3.2. NX4 3.3.3. NX6 3.3.3. NX6 3.3.3. NX8 3.3.5. NX8 water cooled 3.4. Motor Mounting 3.4.1. Motor mounting 3.5. Shaft Loads. 3.5. I Vibration resistance to shaft end. 3.5. Shaft Loads. 3.5. I Natural and fan cooled motor. 3.6.2. Frame recommendation 3.5. Shaft Loads. 3.5. Natural and fan cooled motor. 3.6.2. Frame recommendation 3.6.3. Water cooled motor. 3.6.3. Water cooled motor. 3.6.4. Motor Cooling circuit drop pressure 3.6.5. Motor cooling circuit drop pressure 3.6.6. Chiller selection. 3.7. Thermal Protection. |



|    | 3.8.2.     | Conversion Awg/kcmil/mm <sup>2</sup> :                                       | . 72 |
|----|------------|------------------------------------------------------------------------------|------|
|    | 3.8.3.     | Motor cable length                                                           | . 73 |
|    | 3.8.4.     | Mains supply connection diagrams                                             | . 74 |
|    | 3.9. Feed  | lback system                                                                 | . 81 |
|    | 3.9.1.     | Resolver 2 poles transformation ratio = 0.5 – code A                         | . 81 |
|    | 3.9.1.     | Incremental encoder-Commuted lines 10 poles-2048pulses-code X (On request) . | . 81 |
|    | 3.9.2.     | Hiperface encoder singleturn EKS36 DSL SIL2 – code P                         | . 82 |
|    | 3.9.3.     | Hiperface encoder multiturn EKM36 DSL SIL2 – code Q                          | . 82 |
|    | 3.9.4.     | Hiperface singleturn SKS36 SIL2 (128pulses) – code R                         | . 83 |
|    | 3.9.5.     | Hiperface multiturn SKM36 SIL2 (128pulses) – code S                          | . 83 |
|    | 3.10. Brak | e option                                                                     |      |
| 4. | COMMISS    | SIONING, USE AND MAINTENANCE                                                 | QΕ   |
| →. |            | uctions for commissioning, use and maintenance                               |      |
|    | 4.1.1.     | Equipment delivery                                                           |      |
|    | 4.1.2.     | Handling                                                                     |      |
|    | 4.1.3.     | Storage                                                                      |      |
|    |            | llation                                                                      |      |
|    | 4.2.1.     | Mounting                                                                     |      |
|    | 4.2.2.     | Preparation                                                                  |      |
|    | 4.2.3.     | Mechanical installation                                                      |      |
|    | -          | rical connections                                                            |      |
|    | 4.3.1.     | Cable connection                                                             |      |
|    | 4.3.2.     | Encoder cable handling                                                       |      |
|    |            | tenance Operations                                                           |      |
|    | 4.4.1.     | Summary maintenance operations                                               |      |
|    | 4.5. Trou  | bleshooting                                                                  |      |



#### 1. INTRODUCTION

#### 1.1. Purpose and intended audience

This manual contains information that must be observed to select, install, operate and maintain PARKER NX servomotors.

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Reading and understanding the information described in this document is mandatory before carrying out any operation on the motors. If any malfunction or technical problem occurs, that has not been dealt with in this manual, please contact PARKER for technical assistance. In case of missing information or doubts regarding the installation procedures, safety instructions or any other issue tackled in this manual, please contact PARKER as well.

PARKER's responsibility is limited to its servomotors and does not encompass the whole user's system. Data provided in this manual are for product description only and may not be guaranteed, unless expressly mentioned in a contract.



<u>DANGER:</u> PARKER declines responsibility for any industrial accident or material damage that may arise, if the procedures and safety instructions described in this manual are not scrupulously followed.

### 1.2. Safety

#### 1.2.1. Principle

To operate safely, this equipment must be transported, stored, handled, installed and serviced correctly. Following the safety instructions described in each section of this document is mandatory. Servomotors usage must also comply with all applicable standards, national directives and factory instructions in force.



<u>DANGER:</u> Non-compliance with safety instructions, legal and technical regulations in force may lead to physical injuries or death, as well as damages to the property and the environment.



#### 1.2.2. General Safety Rules



#### Generality

<u>DANGER:</u> The installation, commission and operation must be performed by qualified personnel, in conjunction with this documentation.

The qualified personnel must know the safety (C18510 authorization, standard VDE 0105 or IEC 0364) and local regulations.

They must be authorized to install, commission and operate in accordance with established practices and standards.



#### **Electrical hazard**

Servo drives may contain non-insulated live AC or DC components. Respect the drives commissioning manual. Users are advised to guard against access to live parts before installing the equipment.

Some parts of the motor or installation elements can be subjected to dangerous voltages, when the motor is driven by the inverter, when the motor rotor is manually rotated, when the motor is driven by its load, when the motor is at standstill or stopped.

For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range. CAT I and CAT II meters must not be used on this product.

Allow at least 5 minutes for the drive's capacitors to discharge to safe voltage levels (<50V). Use the specified meter capable of measuring up to 1000V dc & ac rms to confirm that less than 50V is present between all power terminals and between power terminals and earth.

The motor must be permanently connected to an appropriate safety earth. The continuity of the grounding circuit has to be checked on the complete circuit: the resistance between any conductive point and the grounding conductor shall not exceed more than  $100 \text{m}\Omega$ 

To prevent any accidental contact with live components, it is necessary to check that cables are not damaged, stripped or not in contact with a rotating part of the machine. The work place must be clean, dry.

General recommendations:

- Check the wiring circuit
- Lock the electrical cabinets
- Use standardized equipment



#### Mechanical hazard

Servomotors can accelerate in milliseconds. Running the motor can lead to other sections of the machine moving dangerously. Moving parts must be screened off to prevent operators coming into contact with them. The working procedure must allow the operator to keep well clear of the danger area.



#### **Burning Hazard**

Always bear in mind that some parts of the surface of the motor can reach temperatures exceeding 100°C.



#### 2. PRODUCT DESCRIPTION

#### 2.1. Quick URL

All informations and datas are avaible on:

http://www.parker.com/eme/nx

#### 2.2. Overview

NX servomotors Series from PARKER is an innovative direct drive solution designed for industrial applications. NX Series brushless servomotors from Parker SSD Parvex combine exceptional precision and motion quality, high dynamic performances and very compact dimensions.

A large set of torque / speed characteristics, options and customization possibilities are available, making NX Series servomotors the ideal solution for most servosystems applications.

#### **Advantages**

- High precision
- High motion quality
- High dynamic performances
- Compact dimensions and robustness
- Large set of options and customization possibilities
- CE and UL marking certification available.

### 2.3. Applications

**Medical**: Blood pumps, air pump, radiology tables,...

Machine tools: Ancillary axis, spindle, axis...

Semiconductor

Hand tool: screwdriver,...
Packaging machinery
Robot applications
Special machines

**Pumps** 



### 2.4. General Technical Data

|                             | NX3, NX4, NX6                                                           | NX8                                  |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Motor type                  | Permanent-magnet synchronous motor                                      |                                      |  |  |  |  |  |
| Magnets material            | Neodymium Iron Boron                                                    |                                      |  |  |  |  |  |
| Number of poles             | 10                                                                      |                                      |  |  |  |  |  |
| Type of construction        | IMB5 – IMV1 – IMV3 (EN60034                                             | -7)                                  |  |  |  |  |  |
| Degree of protection        | • IP64,                                                                 | • IP64,                              |  |  |  |  |  |
|                             | <ul><li>IP65 in option</li></ul>                                        | <ul> <li>IP65 in option</li> </ul>   |  |  |  |  |  |
|                             |                                                                         | • IP44 in fan                        |  |  |  |  |  |
|                             |                                                                         | cooled version                       |  |  |  |  |  |
| Cooling                     | <ul> <li>Natural cooling</li> </ul>                                     | <ul> <li>Natural cooling,</li> </ul> |  |  |  |  |  |
|                             |                                                                         | <ul> <li>Fan cooled</li> </ul>       |  |  |  |  |  |
|                             |                                                                         | <ul> <li>Water cooled</li> </ul>     |  |  |  |  |  |
| Rated voltage               | 230VAC, 400 VAC and 480 VA                                              |                                      |  |  |  |  |  |
| Insulation of the           | Class F according to IEC 60034-1                                        | Class F according                    |  |  |  |  |  |
| stator winding              |                                                                         | to IEC 60034-1                       |  |  |  |  |  |
| A 1/1/                      | (150 0000 t) (1 1 1 1 t)                                                | with potting                         |  |  |  |  |  |
| Altitude                    | Up to 1000m (IEC 60034-1) (for higher altitude see §3.1.1 for           |                                      |  |  |  |  |  |
| Ambient temperature         | derating)                                                               |                                      |  |  |  |  |  |
| Ambiant temperature         | •-15°C to +40°C (IEC 60034-1)                                           |                                      |  |  |  |  |  |
|                             | •0°C to 40°C for water cooled version (IEC 60034-1)                     |                                      |  |  |  |  |  |
| Ct a no ma to man a noti ma | to avoid condensation see §3.5                                          |                                      |  |  |  |  |  |
| Storage temperature         | -20 +60°C                                                               | 4.4                                  |  |  |  |  |  |
| Vibration severity Shaft    | Grade A according to IEC 60034                                          |                                      |  |  |  |  |  |
| Connection                  | Plain shaft as standard – key on shaft as                               |                                      |  |  |  |  |  |
| Connection                  | Connector     Coble (Net III) on request                                | Connectors     Terminal box          |  |  |  |  |  |
|                             | Cable (Not UL) on request     Flying wires (Not III) on request         | only NX8                             |  |  |  |  |  |
| Marking                     | <ul><li>Flying wires (Not UL) on request</li><li>CE,</li></ul>          | •CE,                                 |  |  |  |  |  |
| wai king                    | •UL as an option                                                        | • UL as an option                    |  |  |  |  |  |
| Paint finish                | Raw as a standard, Black RAL 9005 as                                    |                                      |  |  |  |  |  |
| Sensor                      | Resolver transformation ratio = 0.5 as s                                |                                      |  |  |  |  |  |
| Hiperface - SKS36           | Option                                                                  | italidald                            |  |  |  |  |  |
| Hiperface - SKM36           | Option                                                                  |                                      |  |  |  |  |  |
| Hiperface DSL EKS36         | Option                                                                  |                                      |  |  |  |  |  |
| Hiperface DSL EKM36         | Option                                                                  |                                      |  |  |  |  |  |
| Incremental 2048line        | On request                                                              |                                      |  |  |  |  |  |
| Sensorless                  | ·                                                                       |                                      |  |  |  |  |  |
|                             | On request  Parking brake as an option                                  |                                      |  |  |  |  |  |
| Brake Thormal protection    |                                                                         |                                      |  |  |  |  |  |
| Thermal protection Remark   | PTC or KTY as an option  Numerous customization are possible on request | (enecial shaft                       |  |  |  |  |  |
| Neillai k                   | connection, encoder,)                                                   | (Special Shall,                      |  |  |  |  |  |
|                             | Connection, encoder,)                                                   |                                      |  |  |  |  |  |



### 2.5. Product Code

| Code                                                       | N                       | X       | 3     | 1      | 0      |       | Ε     | Α     | \     | K     | R     | 1     |     | ) | 0 | 0 |
|------------------------------------------------------------|-------------------------|---------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-----|---|---|---|
| <b>Product Series</b>                                      |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Motor size                                                 |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 3, 4, 6 or 8 in relation with the motor                    |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| diameter                                                   | diameter                |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Motor length                                               |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| up to 60 depend of                                         | up to 60 depend on size |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Windings variant                                           |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| E: standard serial                                         |                         | ings o  | class | F      |        |       |       |       |       |       |       |       |     |   |   |   |
| V: serial windings                                         |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| W: serial windings                                         |                         |         |       |        | ed     |       |       |       |       |       |       |       |     |   |   |   |
| Feedback Senso                                             |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| A: resolver 2 pole                                         | s tran                  | sform   | natio | n rati | io = 0 | .5    |       |       |       |       |       |       |     |   |   |   |
| P: Hiperface DSL                                           |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Q: Hiperface DSL                                           | SIL2                    | mutit   | turn  | EKM    | 36     |       |       |       |       |       |       |       |     |   |   |   |
| R: Hiperface SIL2                                          |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| S: Hiperface SIL2                                          |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| X: Commuted line                                           |                         |         | - 20  | )48p   | ulses  | on    | requ  | ues   | st    |       |       |       |     |   |   |   |
| Y: Sensorless, on                                          |                         | est     |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Z: Special encode                                          |                         | - 4•    |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Torque / Speed (                                           | naraد                   | cteri   | Stics | 5      | _      |       |       |       |       |       |       |       |     |   |   |   |
| See motor data                                             |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Painting                                                   |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| R: no painting                                             |                         | B: B    | lack  | RAL    | 9005   |       |       |       |       |       |       |       |     |   |   |   |
| Electric connect                                           |                         |         | _     |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 1: 1m cable shield                                         |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 5: terminal box – i                                        |                         |         |       |        | ng in  | JL v  | ersi  | ion   | , on  | ıly N | IX8   |       |     |   |   |   |
| 6: terminal box (N                                         | ot UL                   | .), oni | y NX  | 8      |        |       |       |       |       |       |       |       |     |   |   |   |
| 7: connector                                               | tor w                   | ith fo  |       | slina  | /Not   | 111.  |       |       |       |       |       |       |     |   |   |   |
| 8: connector – mo<br>9: terminal box – i                   |                         |         |       |        |        |       | ١ ، ه | anly  | v ND  | X۵    |       |       |     |   |   |   |
| Break and therm                                            |                         |         |       |        | 19 (11 | J. O. | _), \ | J111) | y 147 | ΑΟ    |       |       |     |   |   |   |
| Sensor on power                                            |                         |         | opti  | 011    |        |       |       |       |       |       |       |       |     |   |   |   |
| 0: No break, no th                                         |                         |         | sor   |        |        | Ser   | neor  | or    | n sir | nnal  | con   | necto | or. |   |   |   |
| 1: PTC sensor                                              | iciiia                  | 1 3011  | 301   |        |        |       |       |       | _     |       | COIII | 10010 | ,,  |   |   |   |
| 1: PTC sensor  A: PTC sensor  B: with brake  C: KTY sensor |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 4: with brake and PTC sensor D: with brake and PTC sensor  |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 6: KTY84-130 sensor F: with brake and KTY sensor           |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 7: with brake and KTY sensor                               |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| Mechanical Inter                                           | face                    |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 00: plain shaft                                            |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |
| 01: key on shaft 11: IP65 with key on shaft                |                         |         |       |        |        |       |       |       |       |       |       |       |     |   |   |   |

Note: All assossiations are not possible – Contact Parker for checking.

Other: custom code



### 3. TECHNICAL DATA

#### 3.1. Motor selection

#### 3.1.1. NX standard atmospheric conditions

NX motors are designed to operate in inside area:

- air with normal oxygen content, typically 21 % v/v.
- air with a maximum relative humidity of 80%, without condensation.

In other conditions, like outside environment, please consult us.

#### 3.1.2. Altitude derating

From 0 to 1000 m: no derating

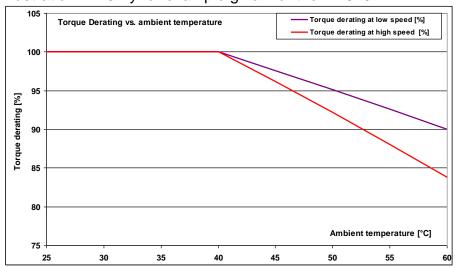
**1000 to 4000 m:** torque derating of 5% for each step of 1000 m for water cooled torque derating of 10% for each step of 1000 m for air cooled

#### 3.1.3. Temperature derating

#### 3.1.3.1. Natural cooled motor

The maximal temperature for natural cooling is 40°C. But, it is possible to increase a little bit the ambient temperature above 40°C, with a torque reduction. The following formula gives an indicative about the torque derating at low speed. But in any case refer to PARKER technical department to know the exact values

At low speed the torque derating is given by the following formula for an ambient temperature > 40°C.


$$Torque\_derating[\%] = 100 * \sqrt{\frac{(145^{\circ}C - Ambient\_temperature^{\circ}C)}{105^{\circ}C}}$$



At high speed, the calculation is more complex, and the derating is much more important.

Please refer to PARKER to know the precise data of Torque derating according to ambient temperature at high speed for a specific motor.

#### Illustration: Only for example given for the NX620EAR:



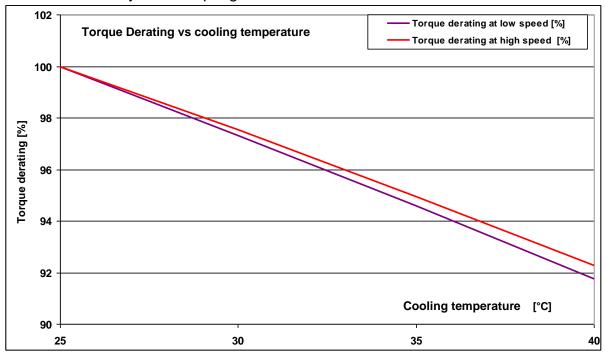


#### 3.1.3.2. Water cooled motor

Typical values are given with a water inlet temperature of 25°C and a temperature gradient Inlet-Outlet of 10°C. These references lead to a winding overheating of 95°C corresponding to a winding temperature of 120°C. Recommendations regarding condensation issues are given at § 3.5

It is possible to increase a little bit the Inlet temperature up to 40°C, but the torque must be reduced. The following formula gives an indicative of the torque derating at low speed. But in any case refer to PARKER technical department to know the exact values

At low speed the torque derating is given by the following formula for an water Inlet temperature > 25°C.


$$Torque\_derating[\%] = 100 * \sqrt{\frac{(120^{\circ}C - Inlet\_temperature^{\circ}C)}{95^{\circ}C}}$$



At high speed, the calculation is more complex, and the derating is much more important.

Please refer to PARKER to know the precise data of Torque derating according to water inlet temperature at high speed for a specific motor.

Illustration: Only for example given for the NX860WAF





#### 3.1.4. Thermal equivalent torque (rms torque)

The selection of the right motor can be made through the calculation of the rms torque  $M_{rms}$  (i.e. root mean squared torque) (sometimes called equivalent torque).

This calculation does not take into account the thermal time constant. It can be used only if the overload time is much shorter than the copper thermal time constant.

The rms torque M<sub>rms</sub> reflects the heating of the motor during its duty cycle.

Let us consider:

- the period of the cycle T[s],
- the successively samples of movements i characterized each ones by the maximal torque  $M_i$  [Nm] reached during the duration  $\Delta t_i$  [s].

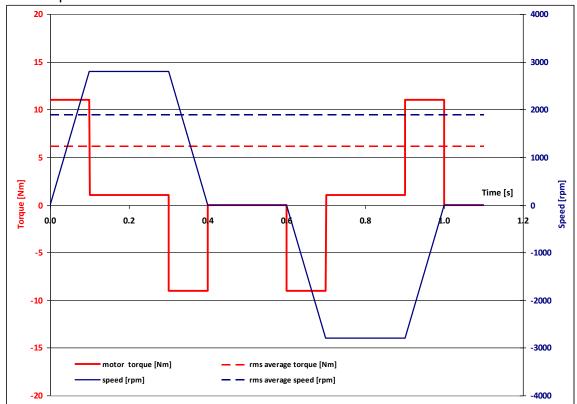
So, the rms torque  $M_{rms}$  can be calculated through the following basic formula:

$$M_{rms} = \sqrt{\frac{1}{T} * \sum_{i=1}^{n} M_i^2 \Delta t_i}$$

#### Example:

For a cycle of 2s at 0 Nm and 2s at 10Nm and a period of 4 s, the rms torque is

$$M_{rms} = \sqrt{\frac{1}{4} * 10^2 * 2} = 7,07Nm$$


#### Illustration:

Acceleration-deceleration torque: 10 Nm for 0,1 s.

Resistant torque: 1 Nm during all the movement.

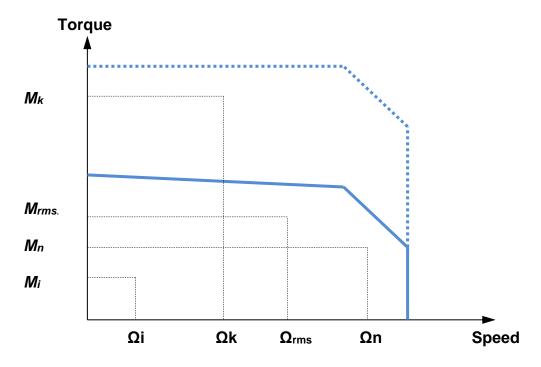
Max-min speed:  $\pm$  2800 rpm during 0,2 s.

Max torque provided by the motor: 11 Nm. rms torque: 6 Nm.



The maximal torque  $M_i$  delivered by the motor at each segment i of movement is obtained by the algebric sum of the acceleration-deceleration torque and the resistant torque. Therefore,  $M_{max}$  corresponds to the maximal value of  $M_i$ .




#### **Selection of the motor:**

The motor adapted to the duty cycle has to provide the rms torque  $M_{rms}$  at the rms speed(\*) without extra heating. This means that the permanent torque  $M_n$  available at the average speed presents a sufficient margin regarding the rms torque  $M_{rms}$ .

$$\Omega_{rms} = \sqrt{\frac{1}{T} * \sum_{i=1}^{n} \Omega_{i}^{2} \Delta t_{i}}$$

(\*) rms speed is calculated thanks to the same formula as that used for the rms torque. The mean speed cannot be used (in general mean speed is equal to zero). Only use the rms speed.

Furthermore, each Mi and speed associated  $\Omega$ i of the duty cycle has to be located in the operational area of the torque vs speed curve.

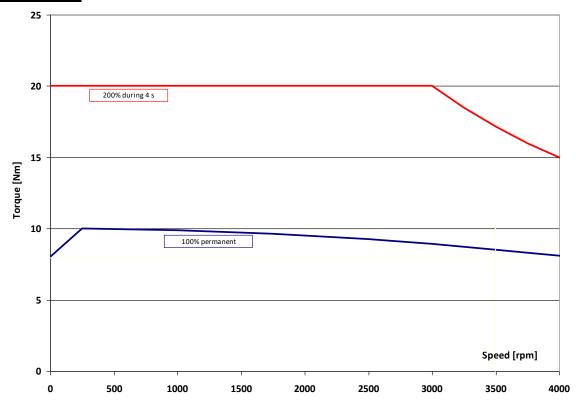




#### 3.1.5. Drive selection

Drive selection depends on its rated power and its mode selection which leads to the maximal current duration.




Please refer to the drive technical documentation for any further information and to select the best motor and drive association.

#### AC890 PARKER drive example:

The rated current provided by the AC890 drive depends on its rated power and its mode selection. "Vector mode" is used for induction motors while "Servo mode" is used for brushless AC motors. With NX motors the power is usually < 37 kW, the rated current corresponds to 100 %.

| Power of Drive AC890 [kW] | < 37 kW           |                  |  |  |  |
|---------------------------|-------------------|------------------|--|--|--|
| Mode                      | Vector mode       | Servo mode       |  |  |  |
| Overload capability [%]   | 150 % during 60 s | 200 % during 4 s |  |  |  |

#### **Illustration:**

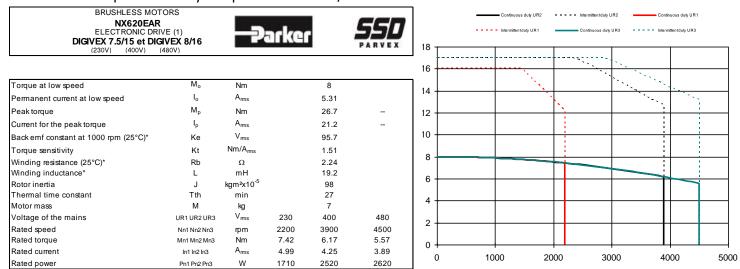




#### Example n°1:

The application needs:

- a rms torque of **7 Nm** at the rms speed of **2000 rpm**,
- an acceleration torque of 12 Nm,
- a maximal speed of 2800 rpm.


#### **Selection of the motor:**

The selected motor is the type **NX620EAR**.

The nominal speed is equals to 3900 rpm.

The maximal speed is equals to 3900 rpm.

The torque sensitivity is equals to 1.47 Nm/Arms.



The permanent current  $I_0$  of the motor is **5.31 Arms** for  $M_0$ =**8 Nm** at low speed.

The nominal current  $I_n$  of the motor is **4.25 Arms** for  $M_n$ =**6.17 Nm** at the nominal speed.

#### Selection of the drive:

The drive has to provide at least a permanent current equals to  $I_0$  (5.31 Arms). In order to obtain an acceleration torque of **12 Nm**, the current will be about 8 Arms (the motor data sheet shows 17 Nm with 11.3 Arms). This means that the drive has to provide at least 8 Arms as transient current.

- → Therefore, we can select the drive AC890SD-53 2100 B which delivers under 400 VAC:
- 6 Arms as permanent current and
- 6\*200%=12 Arms as maximal transient current during 4 s.

The drive is set with "Servo Mode".

- → We also can select the drive **DIGIVEX 8/16** Â which delivers under 400 VAC:
- 5.6 Arms as permanent current and
- 5.6\*200%=11.3 Arms as maximal transient current during 2 s.



#### Example n°2:

This times; the application needs:

- a permanent torque of **5.8 Nm** at low speed,
- a rms torque of **5.8 Nm** at the rms speed of **1890 rpm**,
- an acceleration torque of 8.8 Nm,
- a maximal speed of **2800 rpm**.

#### **Selection of the motor:**

The selected motor is the type **NX620EAR**.

The nominal speed is equals to 3900 rpm.

The maximal speed is equals to 3900 rpm.

The torque sensitivity is equals to 1.47 Nm/Arms.

#### Selection of the drive:

The drive has to provide a permanent current equals to 4 Arms to obtain 5.8 Nm. In order to obtain an acceleration torque of **8.8 Nm**, the current will be of about 6 Arms This means that the drive has to provide at less 6 Arms as transient current.

Compared to the previous example n°1, it is now possible to decrease the size of drive.

→ Therefore, we can select the drive AC890SD-53 1600 B which delivers under 400 VAC:

4 Arms as permanent current and

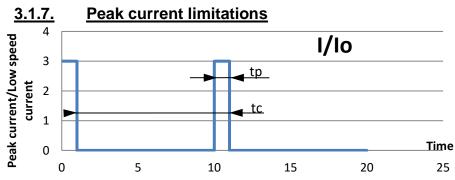
4\*200%=8 Arms as maximal transient current during 4 s.

The drive is set with "Servo Mode".



#### 3.1.6. Current limitation at stall conditions (i.e. speed < 3 rpm)

#### Recommended reduced current at speed < 3 rpm:


$$I_{reduced} = \frac{1}{\sqrt{2}} * I_0 \cong 0.7 * I_0$$



<u>Warning:</u> The current must be limited to the prescribed values. If the nominal torque has to be maintained at stop or low speed (< 3 rpm), imperatively limit the current to 70% of I<sub>0</sub> (permanent current at low speed), in order to avoid an excessive overheating of the motor.

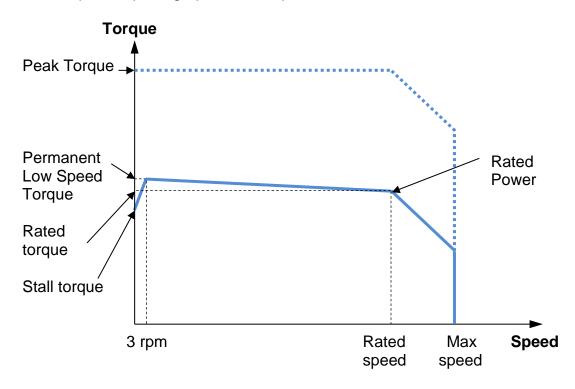


Please refer to the drive technical documentation for any further information and to choose functions to program the drive.



It is possible to use the NX motor with a current higher than the permanent current. But, to avoid any overheating, the following rules must be respected.

- The peak currents and peak torques given in the data sheet must never be exceeded
- 2) The thermal equivalent torque must be respected (§3.1.3)
- 3) If 1) and 2) are respected (it can limit the peak current value or duration), the peak current duration (tp) must be limited, in addition, accordingly to the following table (lo is the permanent current at low speed):


| Ipeak/In | lp/lo =2 | lp/lo = 3 | lp/lo =4    | lp/lo >5 |  |
|----------|----------|-----------|-------------|----------|--|
| NX310    |          |           |             |          |  |
| NX420    | tp<0.8 s | tp<0.3s   | tp<0.15s    | tp<0.1s  |  |
| NX430    |          |           |             |          |  |
| NX620    |          |           |             |          |  |
| NX630    |          | tp<0.6s   | tp<0.3s     | tp<0.2s  |  |
| NX820    | tp<1.5s  |           |             |          |  |
| NX840    |          |           |             |          |  |
| NX860    |          |           |             |          |  |
| NX860V   | tn/2c    | tn/1 Ec   | not a       | llowed   |  |
| NX860W   | tp<3s    | tp<1.5s   | not allowed |          |  |

The peak current duration is calculated for a temperature rise of 3°C Consult us for more demanding applications.



## 3.2. NX Characteristics: Torque, speed, current, power...

The torque vs speed graph below explains different intrinsic values of the next tables.





## 3.2.1. NX datas - Mains voltage 230V

| Motor        | Rated<br>Power<br>Pn<br>(kW) | Rated<br>Torque<br>Mn<br>(Nm) | Rated<br>Current<br>In<br>[Arms] | Low<br>speed<br>torque<br>Mo<br>[Nm] | Low<br>speed<br>Current<br>Io<br>[Arms] | Peak<br>Torque<br>Mpeak<br>[Nm] | Peak<br>Current<br>I peak<br>[Arms] | Max.<br>Speed<br>Nmax<br>[rpm] |
|--------------|------------------------------|-------------------------------|----------------------------------|--------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------|--------------------------------|
| 230VAC power | supply - s                   | ingle or the                  | ee-phased                        | – natural o                          |                                         |                                 |                                     |                                |
| NX310E_P     | 0,43                         | 1,80                          | 1,27                             | 2                                    | 1,4                                     | 6,6                             | 5,6                                 | 2300                           |
| NX310E_K     | 0,69                         | 1,65                          | 2,06                             | 2                                    | 2,4                                     | 6,6                             | 9,7                                 | 4000                           |
| NX310E_I     | 0,87                         | 1,48                          | 2,61                             | 2                                    | 3,4                                     | 6,6                             | 13,5                                | 5600                           |
| NX310E_X     | 0,91                         | 1,32                          | 2,71                             | 2                                    | 3,9                                     | 6,6                             | 15,4                                | 6600                           |
| NX420E_V     | 0,36                         | 3,83                          | 1,30                             | 4                                    | 1,4                                     | 13,4                            | 5,5                                 | 900                            |
| NX420E_P     | 0,85                         | 3,53                          | 2,41                             | 4                                    | 2,7                                     | 13,4                            | 10,9                                | 2300                           |
| NX420E_J     | 1,31                         | 3,14                          | 3,74                             | 4                                    | 4,7                                     | 13,4                            | 18,9                                | 4000                           |
| NX420E_X     | 1,48                         | 3,29                          | 4,53                             | 4                                    | 5,4                                     | 13,4                            | 21,8                                | 4300                           |
| NX430E_V     | 0,31                         | 5,45                          | 1,40                             | 5,5                                  | 1,4                                     | 18,7                            | 5,6                                 | 550                            |
| NX430E_P     | 0,93                         | 5,22                          | 2,69                             | 5,5                                  | 2,8                                     | 18,7                            | 11,3                                | 1700                           |
| NX430E_L     | 1,21                         | 5,04                          | 3,49                             | 5,5                                  | 3,8                                     | 18,7                            | 15,1                                | 2300                           |
| NX430E_J     | 1,57                         | 4,68                          | 4,53                             | 5,5                                  | 5,2                                     | 18,7                            | 21,0                                | 3200                           |
| NX430E_H     | 1,64                         | 4,59                          | 4,78                             | 5,5                                  | 5,6                                     | 18,7                            | 22,6                                | 3400                           |
| NX430E_F     | 1,80                         | 4,29                          | 5,28                             | 5,5                                  | 6,6                                     | 18,7                            | 26,6                                | 4000                           |
| NX620E_V     | 0,91                         | 7,85                          | 2,79                             | 8                                    | 2,8                                     | 26,6                            | 11,3                                | 1100                           |
| NX620E_R     | 1,71                         | 7,42                          | 4,99                             | 8                                    | 5,3                                     | 26,6                            | 21,2                                | 2200                           |
| NX620E_J     | 2,55                         | 6,08                          | 7,82                             | 8                                    | 9,9                                     | 26,6                            | 39,5                                | 4000                           |
| NX620E_D     | 2,63                         | 5,12                          | 8,23                             | 8                                    | 12,1                                    | 26,6                            | 48,3                                | 4900                           |
| NX630E_V     | 0,89                         | 11,40                         | 2,51                             | 12                                   | 2,6                                     | 39,9                            | 10,5                                | 750                            |
| NX630E_R     | 1,63                         | 10,70                         | 4,75                             | 12                                   | 5,3                                     | 39,9                            | 21,0                                | 1450                           |
| NX630E_N     | 2,36                         | 9,81                          | 6,63                             | 12                                   | 7,9                                     | 39,9                            | 31,7                                | 2300                           |
| NX630E_K     | 2,70                         | 9,21                          | 7,80                             | 12                                   | 9,9                                     | 39,9                            | 39,4                                | 2800                           |
| NX630E_G     | 3,48                         | 8,31                          | 10,10                            | 12                                   | 13,9                                    | 39,9                            | 55,7                                | 4000                           |
| NX820E_X     | 1,61                         | 15,40                         | 4,99                             | 16                                   | 5,2                                     | 49,9                            | 20,3                                | 1000                           |
| NX820E_R     | 3,34                         | 14,50                         | 10,00                            | 16                                   | 11,0                                    | 49,9                            | 43,2                                | 2200                           |
| NX820E_L     | 4,99                         | 13,20                         | 14,80                            | 16                                   | 17,6                                    | 49,9                            | 69,2                                | 3600                           |
| NX840E_Q     | 3,21                         | 25,50                         | 9,27                             | 28                                   | 10,1                                    | 91,8                            | 39,9                                | 1200                           |
| NX840E_L     | 4,32                         | 24,30                         | 13,30                            | 28                                   | 15,1                                    | 91,8                            | 59,8                                | 1700                           |
| NX840E_K     | 4,91                         | 23,50                         | 14,30                            | 28                                   | 16,8                                    | 91,8                            | 66,5                                | 2000                           |
| NX840E_J     | 5,27                         | 22,90                         | 15,70                            | 28                                   | 18,9                                    | 91,8                            | 74,8                                | 2200                           |
| NX860E_J     | 5,40                         | 35,60                         | 16,20                            | 41                                   | 18,5                                    | 136,5                           | 74,0                                | 1450                           |
| NX860E_F     | 6,53                         | 32,80                         | 21,80                            | 41                                   | 27,0                                    | 136,5                           | 107,6                               | 1900                           |
| NX860E_D     | 7,48                         | 27,50                         | 22,50                            | 41                                   | 33,0                                    | 136,5                           | 131,6                               | 2600                           |
| NX860V_J     | 8,99                         | 59,20                         | 27,10                            | 64                                   | 29,3                                    | 136,5                           | 74,0                                | 1450                           |
| NX860V_F     | 11,80                        | 56,40                         | 37,50                            | 64                                   | 42,7                                    | 136,5                           | 107,6                               | 2000                           |
| 230 VAC powe |                              |                               |                                  |                                      |                                         |                                 |                                     |                                |
| NX860W_F     | 18,50                        | 88,30                         | 61,50                            | 90                                   | 62,6                                    | 137,0                           | 108,3                               | 2000                           |
| NX860W_D     | 23,10                        | 87,40                         | 74,50                            | 90                                   | 76,5                                    | 137,0                           | 132,4                               | 2600                           |



### 3.2.2. NX datas – Mains voltage 400V

| Motor        | Rated<br>Power<br>Pn<br>(kW) | Rated<br>Torque<br>Mn<br>(Nm) | Rated<br>Current<br>In<br>[Arms] | Low<br>speed<br>torque<br>Mo<br>[Nm] | Low<br>speed<br>Current<br>Io<br>[Arms] | Peak<br>Torque<br>Mpeak<br>[Nm] | Peak<br>Current<br>I peak<br>[Arms] | Max.<br>Speed<br>Nmax<br>[rpm] |
|--------------|------------------------------|-------------------------------|----------------------------------|--------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------|--------------------------------|
| 400 VAC powe | r supply - t                 | hree-phase                    | ed – Natura                      | l cooling                            |                                         |                                 |                                     |                                |
| NX310E_P     | 0,689                        | 1,65                          | 1,2                              | 2                                    | 1,4                                     | 6,6                             | 5,6                                 | 4000                           |
| NX310E_K     | 0,997                        | 1,36                          | 1,8                              | 2                                    | 2,4                                     | 6,6                             | 9,7                                 | 7000                           |
| NX310E_I     | 0,9                          | 1,07                          | 2,0                              | 2                                    | 3,4                                     | 6,6                             | 13,5                                | 8000                           |
| NX310E_X     | 0,9                          | 1,07                          | 2,3                              | 2                                    | 3,9                                     | 6,6                             | 15,4                                | 8000                           |
| NX420E_V     | 0,753                        | 3,6                           | 1,2                              | 4                                    | 1,4                                     | 13,4                            | 5,5                                 | 2000                           |
| NX420E_P     | 1,31                         | 3,14                          | 2,2                              | 4                                    | 2,7                                     | 13,4                            | 10,9                                | 4000                           |
| NX420E_J     | 1,65                         | 2,62                          | 3,2                              | 4                                    | 4,7                                     | 13,4                            | 18,9                                | 6000                           |
| NX420E_X     | 1,49                         | 1,89                          | 2,7                              | 4                                    | 5,4                                     | 13,4                            | 21,8                                | 7500                           |
| NX430E_V     | 0,563                        | 5,38                          | 1,4                              | 5,5                                  | 1,4                                     | 18,7                            | 5,6                                 | 1000                           |
| NX430E_P     | 1,5                          | 4,77                          | 2,5                              | 5,5                                  | 2,8                                     | 18,7                            | 11,3                                | 3000                           |
| NX430E_L     | 1,8                          | 4,29                          | 3,0                              | 5,5                                  | 3,8                                     | 18,7                            | 15,1                                | 4000                           |
| NX430E_J     | 1,93                         | 3,35                          | 3,3                              | 5,5                                  | 5,2                                     | 18,7                            | 21,0                                | 5500                           |
| NX430E_H     | 1,87                         | 2,98                          | 3,2                              | 5,5                                  | 5,6                                     | 18,7                            | 22,6                                | 6000                           |
| NX430E_F     | 1,87                         | 2,98                          | 3,8                              | 5,5                                  | 6,6                                     | 18,7                            | 26,6                                | 6000                           |
| NX620E_V     | 1,57                         | 7,52                          | 2,7                              | 8                                    | 2,8                                     | 26,6                            | 11,3                                | 2000                           |
| NX620E_R     | 2,52                         | 6,17                          | 4,3                              | 8                                    | 5,3                                     | 26,6                            | 21,2                                | 3900                           |
| NX620E_J     | 2,45                         | 4,1                           | 5,6                              | 8                                    | 9,9                                     | 26,6                            | 39,5                                | 5700                           |
| NX620E_D     | 2,31                         | 3,68                          | 6,2                              | 8                                    | 12,1                                    | 26,6                            | 48,3                                | 6000                           |
| NX630E_V     | 1,53                         | 10,8                          | 2,4                              | 12                                   | 2,6                                     | 39,9                            | 10,5                                | 1350                           |
| NX630E_R     | 2,64                         | 9,34                          | 4,2                              | 12                                   | 5,3                                     | 39,9                            | 21,0                                | 2700                           |
| NX630E_N     | 3,18                         | 7,6                           | 5,3                              | 12                                   | 7,9                                     | 39,9                            | 31,7                                | 4000                           |
| NX630E_K     | 3,19                         | 6,23                          | 5,5                              | 12                                   | 9,9                                     | 39,9                            | 39,4                                | 4900                           |
| NX630E_G     | 1,89                         | 2,86                          | 4,0                              | 12                                   | 13,9                                    | 39,9                            | 55,7                                | 6300                           |
| NX820E_X     | 2,93                         | 14,7                          | 4,8                              | 16                                   | 5,2                                     | 49,9                            | 20,3                                | 1900                           |
| NX820E_R     | 5,29                         | 12,9                          | 9,1                              | 16                                   | 11,0                                    | 49,9                            | 43,2                                | 3900                           |
| NX820E_L     | 6,72                         | 10,4                          | 11,9                             | 16                                   | 17,6                                    | 49,9                            | 69,2                                | 6200                           |
| NX840E_Q     | 5,09                         | 23,2                          | 8,5                              | 28                                   | 10,1                                    | 91,8                            | 39,9                                | 2100                           |
| NX840E_L     | 6,49                         | 20                            | 11,1                             | 28                                   | 15,1                                    | 91,8                            | 59,8                                | 3100                           |
| NX840E_K     | 6,8                          | 18,6                          | 11,5                             | 28                                   | 16,8                                    | 91,8                            | 66,5                                | 3500                           |
| NX840E_J     | 6,96                         | 17                            | 12,0                             | 28                                   | 18,9                                    | 91,8                            | 74,8                                | 3900                           |
| NX860E_J     | 7,48                         | 27,5                          | 12,7                             | 41                                   | 18,5                                    | 136,5                           | 74,0                                | 2600                           |
| NX860E_F     | 7,34                         | 21,9                          | 14,9                             | 41                                   | 27,0                                    | 136,5                           | 107,6                               | 3200                           |
| NX860E_D     | 7,34                         | 21,9                          | 18,2                             | 41                                   | 33,0                                    | 136,5                           | 131,6                               | 3200                           |
| NX860V_J     | 14,3                         | 52,6                          | 24,1                             | 64                                   | 29,3                                    | 136,5                           | 74,0                                | 2600                           |
| NX860V_F     | 17                           | 43,4                          | 28,9                             | 64                                   | 42,7                                    | 136,5                           | 107,6                               | 3750                           |
| 400 VAC powe |                              |                               |                                  |                                      |                                         |                                 |                                     |                                |
| NX860W_F     | 33,4                         | 85,1                          | 59,3                             | 90                                   | 62,6                                    | 137                             | 108,3                               | 3750                           |
| NX860W_D     | 38,6                         | 83,7                          | 71,3                             | 90                                   | 76,5                                    | 137                             | 132,4                               | 4400                           |



### 3.2.3. Further Data

| Motor    | Ke<br>[Vrms/krpm] | Kt (sine)<br>[Nm/Arms] | Winding<br>Resistance<br>[ohms] | Inductance<br>[mH] | Moment of<br>Inertia<br>J<br>[kgmm <sup>2</sup> ] | Motor<br>Weight<br>without<br>brake<br>[kg] | Water Flow<br>[l/min] |
|----------|-------------------|------------------------|---------------------------------|--------------------|---------------------------------------------------|---------------------------------------------|-----------------------|
| NX310E_I | 36,5              | 0,591                  | 3,41                            | 10,5               | 79                                                | 2,0                                         | -                     |
| NX310E_K | 50,9              | 0,823                  | 6,58                            | 20,3               | 79                                                | 2,0                                         | -                     |
| NX310E_P | 88,9              | 1,440                  | 20,70                           | 62,0               | 79                                                | 2,0                                         | -                     |
| NX310E_X | 32,1              | 0,519                  | 2,68                            | 8,1                | 79                                                | 2,0                                         | -                     |
| NX420E_J | 51,9              | 0,853                  | 2,31                            | 11,0               | 290                                               | 3,7                                         | -                     |
| NX420E_P | 89,9              | 1,480                  | 7,20                            | 33,0               | 290                                               | 3,7                                         | -                     |
| NX420E_V | 179,0             | 2,940                  | 28,40                           | 131,0              | 290                                               | 3,7                                         | -                     |
| NX420E_X | 44,9              | 0,738                  | 1,78                            | 8,2                | 290                                               | 3,7                                         | -                     |
| NX430E_F | 51,8              | 0,828                  | 1,38                            | 6,8                | 426                                               | 4,5                                         | -                     |
| NX430E_H | 61,0              | 0,975                  | 1,81                            | 9,4                | 426                                               | 4,5                                         | -                     |
| NX430E_J | 65,6              | 1,050                  | 2,19                            | 10,9               | 426                                               | 4,5                                         | -                     |
| NX430E_L | 90,9              | 1,450                  | 4,22                            | 21,0               | 426                                               | 4,5                                         | -                     |
| NX430E_P | 122,0             | 1,950                  | 7,26                            | 37,8               | 426                                               | 4,5                                         | -                     |
| NX430E_V | 244,0             | 3,900                  | 29,00                           | 151,0              | 426                                               | 4,5                                         | -                     |
| NX620E_D | 42,0              | 0,662                  | 0,44                            | 3,7                | 980                                               | 6,9                                         | -                     |
| NX620E_J | 51,3              | 0,809                  | 0,60                            | 5,5                | 980                                               | 6,9                                         | -                     |
| NX620E_R | 95,7              | 1,510                  | 2,24                            | 19,2               | 980                                               | 6,9                                         | -                     |
| NX620E_V | 180,0             | 2,830                  | 7,90                            | 67,6               | 980                                               | 6,9                                         | -                     |
| NX630E_G | 52,1              | 0,861                  | 0,34                            | 3,5                | 1 470                                             | 8,0                                         | -                     |
| NX630E_K | 73,6              | 1,220                  | 0,67                            | 7,1                | 1 470                                             | 8,0                                         | -                     |
| NX630E_N | 91,6              | 1,510                  | 1,12                            | 10,9               | 1 470                                             | 8,0                                         | -                     |
| NX630E_R | 138,0             | 2,290                  | 2,43                            | 24,9               | 1 470                                             | 8,0                                         | -                     |
| NX630E_V | 277,0             | 4,570                  | 9,19                            | 99,6               | 1 470                                             | 8,0                                         | -                     |
| NX820E_L | 56,9              | 0,911                  | 0,38                            | 3,4                | 3 200                                             | 13,0                                        | -                     |
| NX820E_R | 91,0              | 1,460                  | 1,01                            | 8,6                | 3 200                                             | 13,0                                        | -                     |
| NX820E_X | 193,0             | 3,100                  | 4,53                            | 38,7               | 3 200                                             | 13,0                                        | -                     |
| NX840E_J | 92,8              | 1,480                  | 0,37                            | 4,3                | 6 200                                             | 20,0                                        | -                     |
| NX840E_K | 104,0             | 1,670                  | 0,49                            | 5,4                | 6 200                                             | 20,0                                        | -                     |
| NX840E_L | 116,0             | 1,850                  | 0,58                            | 6,7                | 6 200                                             | 20,0                                        | -                     |
| NX840E_Q | 174,0             | 2,780                  | 1,36                            | 15,1               | 6 200                                             | 20,0                                        | -                     |
| NX860E_D | 78,7              | 1,240                  | 0,16                            | 2,0                | 9 200                                             | 27,0                                        | -                     |
| NX860E_F | 96,1              | 1,520                  | 0,24                            | 3,0                | 9 200                                             | 27,0                                        | -                     |
| NX860E_J | 140,0             | 2,210                  | 0,50                            | 6,4                | 9 200                                             | 27,0                                        | -                     |
| NX860V_F | 96,1              | 1,500                  | 0,24                            | 3,0                | 9 200                                             | 30,5                                        | -                     |
| NX860V_J | 140,0             | 2,180                  | 0,50                            | 6,4                | 9 200                                             | 30,5                                        | -                     |
| NX860W_D | 78,7              | 1,180                  | 0,16                            | 2,0                | 9 200                                             | 27,5                                        | 5,0                   |
| NX860W_F | 96,1              | 1,440                  | 0,24                            | 3,0                | 9 200                                             | 27,5                                        | 11.8                  |

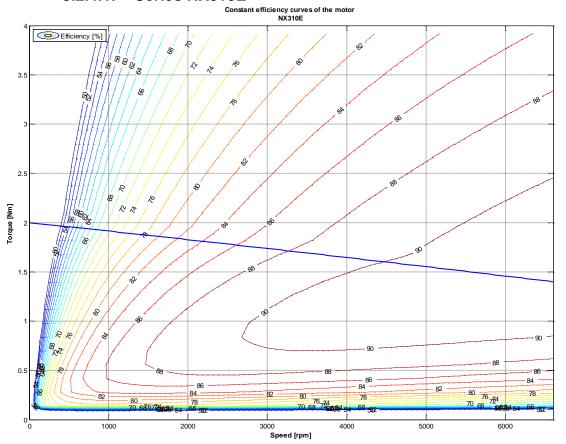


#### 3.2.4. Efficiency curves



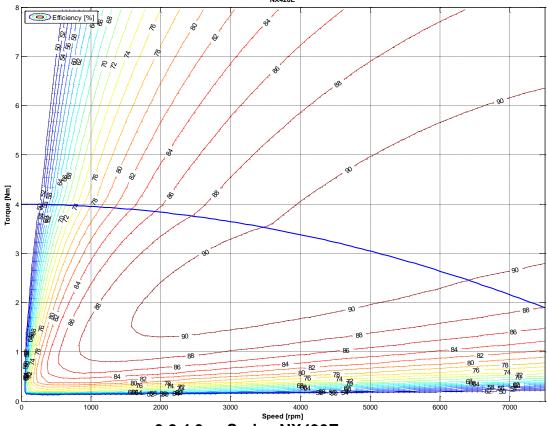
<u>Caution:</u> The efficiency curves are typical values. They may vary from one motor to an other



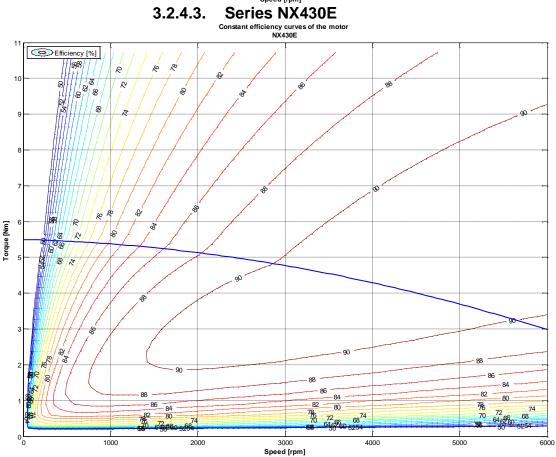

<u>Caution:</u> The efficiency curves are given for an optimal motor control (no voltage saturation and optimal phase between current and EMF)



<u>Caution:</u> The efficiency curves do not include the losses due to the switching frequency.



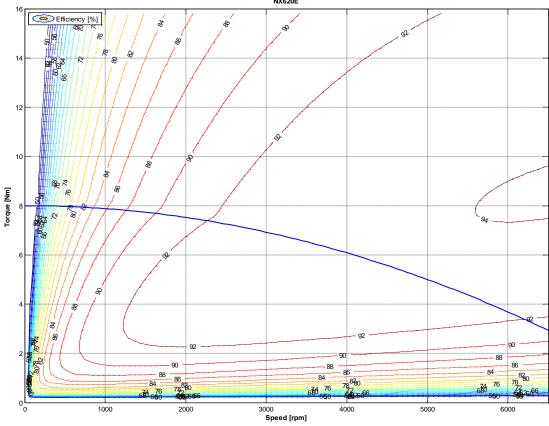

### 3.2.4.1. Series NX310E





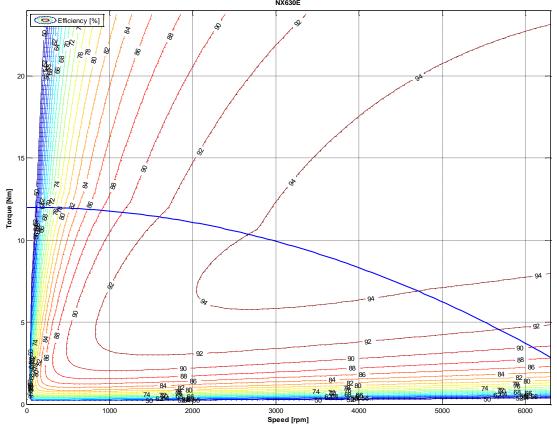

Series NX420E 3.2.4.2.




3.2.4.3.



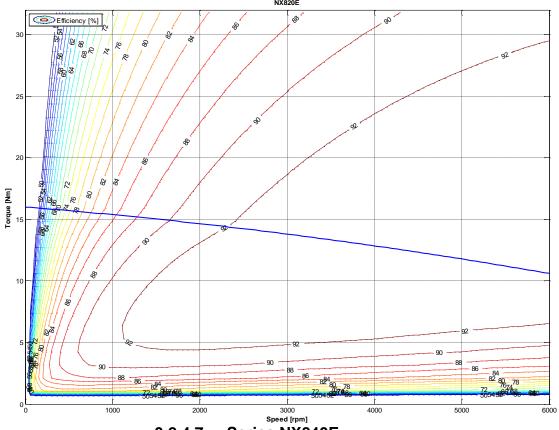





Constant efficiency curves of the motor NX620E

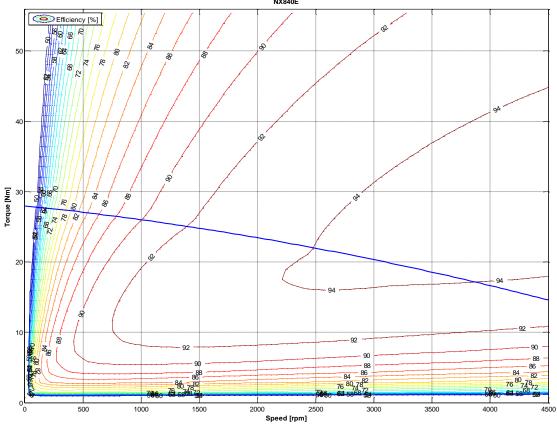


Series NX630E


Constant efficiency curves of the motor NX630E 3.2.4.5.

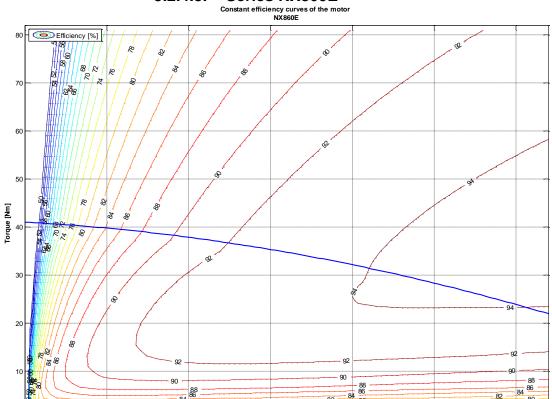





3.2.4.6. Series NX820E

Constant efficiency curves of the motor



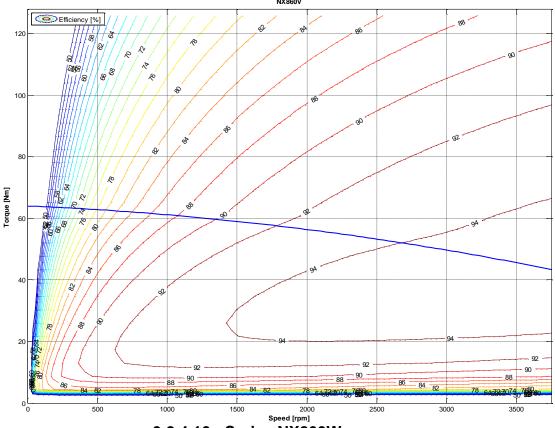

3.2.4.7. Series NX840E

Constant efficiency curves of the motor





### 3.2.4.8. Series NX860E




1500 Speed [rpm] 2500





Constant efficiency curves of the motor NX860V



3.2.4.10. Series NX860W

Constant efficiency curves of the motor NX860W Efficiency [%] 160 120 Torque [Nm] 60 22

Speed [rpm]

1500

2000



#### 3.2.5. Electromagnetic losses



<u>Caution:</u> Following data result from our best estimations but are indicative. They can vary from one motor to another and with temperature. No responsibility will be accepted for direct or indirect losses or damages due to the use of these data.

(Following data are indicative)

| Туре     | Tf [Nm] | Kd [Nm/1000rpm] |
|----------|---------|-----------------|
| NX310EAP | 0.067   | 0.033           |
| NX420EAP | 0.090   | 0.114           |
| NX430EAP | 0.106   | 0.149           |
| NX620EAR | 0.106   | 0.196           |
| NX630EAR | 0.131   | 0.245           |
| NX820EAR | 0.160   | 0.300           |
| NX840EAK | 0.190   | 0.380           |
| NX860EAJ | 0.220   | 0.460           |

Torque losses =  $Tf + Kd \times speed/1000$ 



#### 3.2.6. Time constants of the motor

#### 3.2.6.1. Electric time constant:

$$\tau_{elec} = \frac{L_{ph\_ph}}{R_{ph\_ph}}$$

With following values given in the motor data sheet  $L_{ph\_ph}$  inductance of the motor phase to phase [H],  $R_{ph\_ph}$  resistance of the motor phase to phase at 25°C [Ohm].

#### **Example:**

Motor series NX620EAR  $L_{ph\_ph} = 19.2 \text{ mH or } 19.2.10^{-3} \text{ H}$   $R_{ph\_ph} \text{ at } 25^{\circ}\text{C} = 2.24 \text{ Ohm}$  $\rightarrow \sigma_{elec} = 19.2.10^{-3}/2.24 = 8.6 \text{ ms}$ 

An overall summary of motor time constants is given a little further.

#### 3.2.6.2. Mechanical time constant:

$$\tau_{mech} = \frac{R_{ph_{-n}} * J}{Kt * Ke_{ph_{-n}}} = \frac{0.5 * R_{ph_{-}ph} * J}{(3 * \frac{Ke_{ph_{-}ph}}{\sqrt{3}}) * \frac{Ke_{ph_{-}ph}}{\sqrt{3}}}$$

$$\tau_{mech} = \frac{0.5 * R_{ph_{-}ph} * J}{(Ke_{ph_{-}ph})^{2}}$$

With following values obtained from the motor data sheet:

*R<sub>ph\_ph</sub>* resistance of the motor phase to phase at 25°C [Ohm],

**J** inertia of the rotor [kgm²],

**Keph\_ph** back emf coefficient phase to phase [V<sub>rms</sub>/rad/s].

The coefficient  $Ke_{ph\_ph}$  in the formula above is given in [V<sub>rms</sub>/rad/s] To calculate this coefficient from the datasheet, use the following relation:

$$Ke_{ph_{-}ph_{[V_{rms}/rad/s]}} = \frac{Ke_{ph_{-}ph_{[V_{rms}/1000rpm]}}}{2*\pi*1000}$$

#### **Example:**

Motor series NX620EAR

 $R_{ph}$  ph at  $25^{\circ}C = 2.24$  Ohm

 $J = 98.10^{-5} \text{ kgm}^2$ 

 $Ke_{ph\_ph} [V_{rms}/1000rpm] = 95.7 [V_{rms}/1000rpm]$ 

 $\rightarrow$  Keph\_ph [V<sub>rms/rad/s</sub>] = 95.7/(2\* $\pi$ \*1000/60) = 0.9139 [V<sub>rms/rad/s</sub>]

 $\rightarrow \sigma_{\text{mech}} = 0.5 \times 2.24 \times 98.10^{-5} / (0.9139^2) = 1.2 \text{ ms}$ 



#### Remarks:

For a DC motor, the mechanical time constant  $\sigma_{mech}$  represents the duration needed to reach 63% of the final speed when applying a voltage step without any resistant torque. However this value makes sense only if the electric time constant  $\sigma_{elec}$  is much smaller than the mechanical time constant  $\sigma_{mech}$  (for the motor NX620EAR taken as illustration, it is not the case because we obtain  $\sigma_{mech}$ - $\sigma_{elec}$ -).

An overall summary of motor time constants is given a little further.

$$\tau_{\rm therm} = Rth_{\rm copper\_iron} * Cth_{\rm copper}$$

$$Cth_{copper_{[J/^{\circ}K]}} = Mass_{copper_{[Kg]}} *389_{[J/kg^{\circ}K]}$$

With:

**Rth**<sub>copper\_iron</sub> thermal resistance between copper and iron [°K/W]

**Cth**<sub>copper</sub> thermal capacity of the copper [J/°K] **Mass**<sub>copper</sub> mass of the copper (winding) [kg]

Hereunder is given an overall summary of motor time constants:

| Туре   | Electric time constant [ms] | Mechanical time constant [ms] | Thermal time constant of copper [s] |
|--------|-----------------------------|-------------------------------|-------------------------------------|
| NX310E | 3.0                         | 1.1                           | 60.2                                |
| NX420E | 4.6                         | 1.4                           | 71.0                                |
| NX430E | 5.2                         | 1.1                           | 79.8                                |
| NX620E | 8.6                         | 1.3                           | 137                                 |
| NX630E | 10.3                        | 1.0                           | 158                                 |
| NX820E | 8.5                         | 2.1                           | 135                                 |
| NX840E | 11.0                        | 1.5                           | 171                                 |
| NX860E | 12.9                        | 1.3                           | 206                                 |
| NX860V | 12.9                        | 1.3                           | 81                                  |



#### 3.2.7. Speed ripple

The typical speed ripple for a NX motor with a resolver at 4000rpm is 3% peak to peak. This value is given as indicative data because depending on the settings of the drive (gains of both speed and current regulation loops, presence of filtering or not, load inertia, resistant torque and type of sensor in use), without external load (neither external inertia nor resistant torque).

### 3.2.8. Cogging torque

The typical cogging for a NX series below is the maximum value peak to peak in N.cm:

| Motor | Cooging Maxi<br>[N.cm] |
|-------|------------------------|
| NX310 | 2.5                    |
| NX420 | 4.4                    |
| NX430 | 5.7                    |
| NX620 | 5.3                    |
| NX630 | 6.8                    |
| NX820 | 9                      |
| NX840 | 16                     |
| NX860 | 20                     |



#### 3.2.9. Rated data according to rated voltage variation

The nominal characteristics and especially the rated speed, maximal speed, rated power, rated torque, depend on the nominal voltage supplying the motor considered as the rated voltage. The rated data mentioned in the data sheet are given for each association of motor and drive. Therefore, if the supply voltage changes, the rated values will also change. As long as the variation of the rated voltage remains limited, for instance  $\pm 10\%$  of the nominal value, it is possible to correctly evaluate the new rated values as illustrated below.

#### **Example:**

Extract of NX620EAR datasheet

BRUSHLESS MOTORS

NX620EAR

ELECTRONIC DRIVE (1)

DIGIVEX 7.5/15 et DIGIVEX 8/16

(230V) (400V) (480V)





| Torque at low speed                  | M <sub>o</sub> | Nm                    |      | 8    |      |
|--------------------------------------|----------------|-----------------------|------|------|------|
| Permanent current at low speed       | I <sub>o</sub> | $A_{rms}$             |      | 5.31 |      |
| Peak torque                          | $M_p$          | Nm                    |      | 26.7 |      |
| Current for the peak torque          | l <sub>p</sub> | $A_{rms}$             |      | 21.2 |      |
| Back emf constant at 1000 rpm (25℃)* | Ke             | $V_{rms}$             |      | 95.7 |      |
| Torque sensitivity                   | Kt             | $Nm/A_{rms}$          |      | 1.51 |      |
| Winding resistance (25℃)*            | Rb             | $\Omega$              |      | 2.24 |      |
| Winding inductance*                  | L              | mH                    |      | 19.2 |      |
| Rotor inertia                        | J              | kgm²x10 <sup>-5</sup> |      | 98   |      |
| Thermal time constant                | Tth            | min                   |      | 27   |      |
| Motor mass                           | M              | kg                    |      | 7    |      |
| Voltage of the mains                 | UR1 UR2 UR3    | $V_{rms}$             | 230  | 400  | 480  |
| Rated speed                          | Nn1 Nn2 Nn3    | rpm                   | 2200 | 3900 | 4500 |
| Rated torque                         | Mn1 Mn2 Mn3    | Nm                    | 7.42 | 6.17 | 5.57 |
| Rated current                        | In1 In2 In3    | $A_{rms}$             | 4.99 | 4.25 | 3.89 |
| Rated power                          | Pn1 Pn2 Pn3    | W                     | 1710 | 2520 | 2620 |

 $\,\square\,$  If we suppose that the rated voltage  $U_n{=}400~V_{rms}$  decreases of 10% ; this means that the new rated voltage becomes  $U_{n2}{=}360~V_{rms}.$ 

#### Rated speed:

The former rated speed  $N_n$ =3900 rpm obtained with a rated voltage  $U_n$ =400  $V_{rms}$  and an efficiency of  $\eta$ =92% leads to the new rated speed  $N_{n2}$  given as follows:

$$N_{n2} = N_n * \frac{\frac{U_{n2}}{U_n} - 1 + \eta}{\eta}$$

$$N_{n2} = 3900 * \frac{\frac{360}{400} - 1 + 0.92}{0.92} = 3476rpm$$



#### Maximum speed:

The former maximum speed  $N_{max} = 3900$  rpm obtained with  $U_n = 400$  V<sub>rms</sub> and  $N_n = 3900$  rpm leads to the new maximum speed  $N_{max2}$  given as follows:

$$N_{\text{max 2}} = N_{\text{max}} * \frac{N_{n2}}{N_n}$$
  $N_{\text{max 2}} = 3900 * \frac{3476}{3900} = 3476 rpm$ 

#### N.B.

If the rated voltage increases ( $U_{n2} > U_n$ ), the new rated speed  $N_{n2}$  and the new maximum speed  $N_{max2}$  will be greater than the former ones  $N_n$  and  $N_{max}$ . Moreover you will have to check that the drive still shows able to deal with the new maximum electric frequency.



<u>Warning:</u> If the main supply decreases, you must reduce the maximum speed accordingly in order not damage the motor. In case of doubt, consult us.

#### Rated power:

The former rated power  $P_n$ =2520 W obtained with  $U_n$  =400  $V_{rms}$  leads to the new rated power  $P_{n2}$  given as follows:

$$P_{n2} = P_n * \frac{U_{n2}}{U_n}$$
 
$$P_{n2} = 2520 * \frac{360}{400} = 2268W$$

#### Rated torque:

The former rated torque  $M_n = 6.17$  Nm obtained with  $U_n = 400$  V<sub>rms</sub> leads to the new rated torque  $M_{n2}$  given as follows:

$$M_{n2} = \frac{P_{n2}}{\frac{2 * \pi * N_{n2}}{60}} \quad M_{n2} = \frac{2268}{\frac{2 * \pi * 3476}{60}} = 6.23Nm$$



#### 3.2.10. Voltage withstand characteristics of NX series

The motors fed by converters are subject to higher stresses than in case of sinusoidal power supply. The combination of fast switching inverters with cables will cause overvoltage due to the transmission line effects. The peak voltage is determined by the voltage supply, the length of the cables and the voltage rise time. As an example, with a rise time of 200 ns and a 30 m (100 ft) cable, the voltage at the motor terminals is twice the inverter voltage.

The insulation system of the servomotors NX is designed to withstand high repetitive pulse voltages and largely exceeds the recommendations of the IEC/TS 60034-25 ed 2.0 2007-03-12 for motors without filters up to 500V AC (See figure 1).

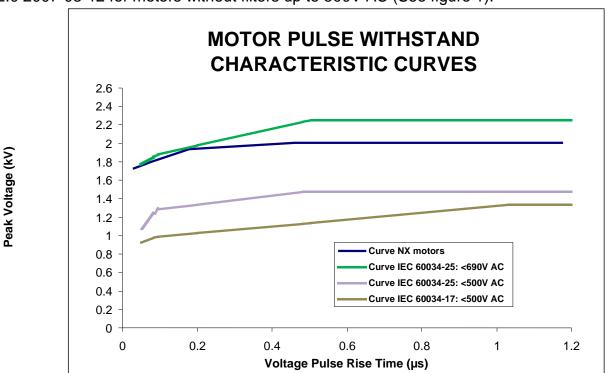
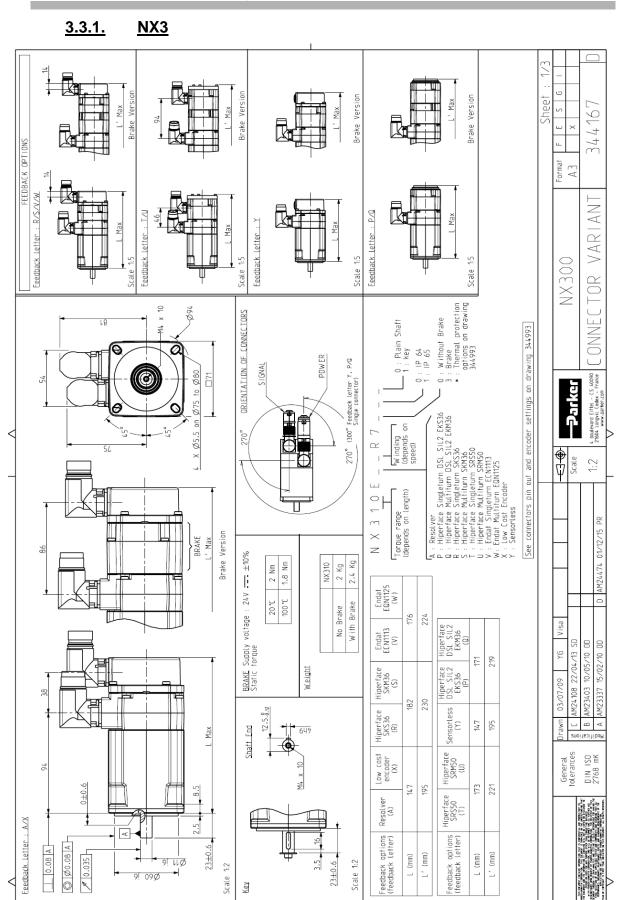
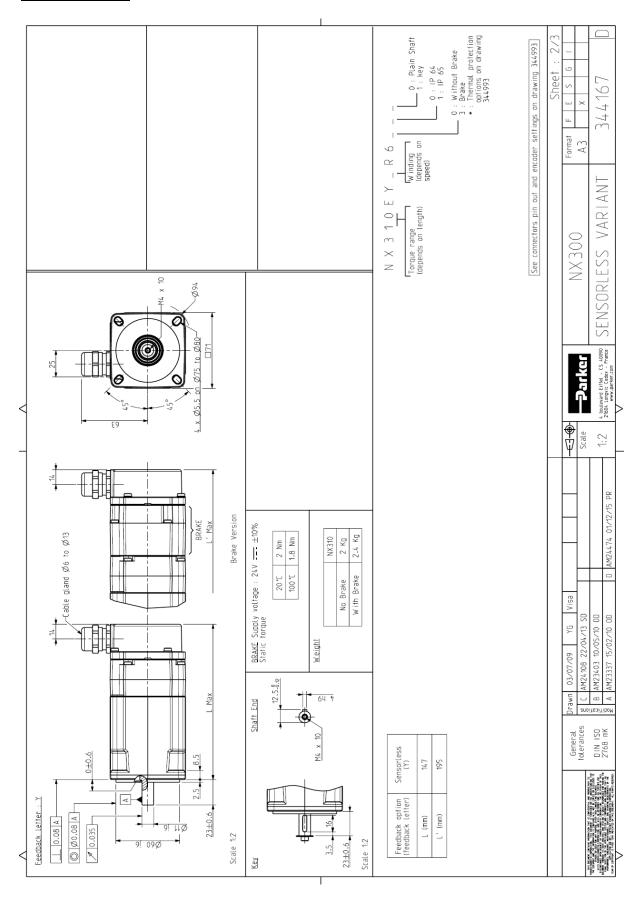


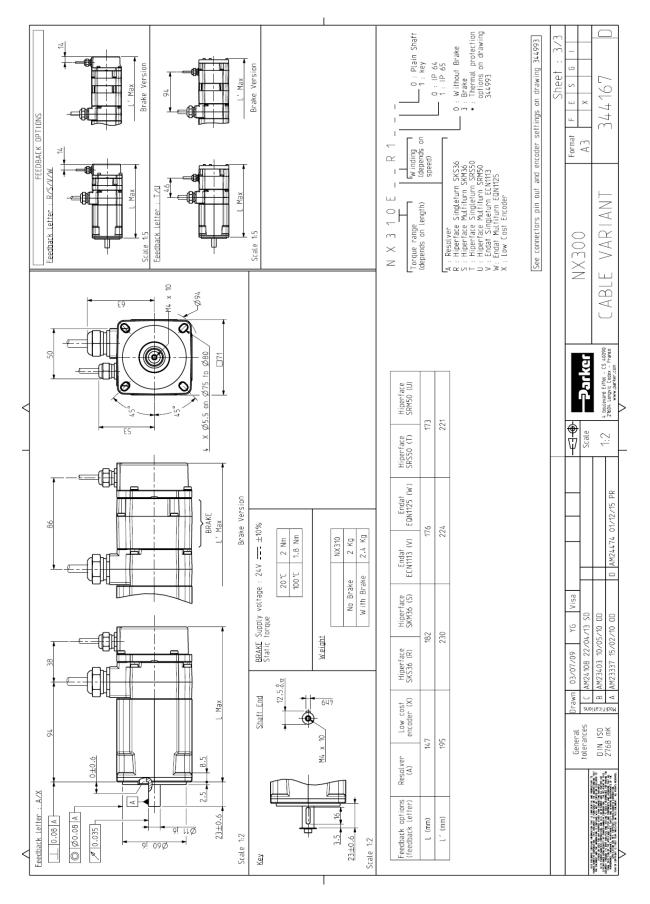

Figure 1: Minimum Voltage withstands characteristics for motors insulations according to IEC standards. At the top are the typical capabilities for the NX motors.


Note: The pulse rise times are defined in accordance with the IEC/TS 60034-17 ed4.0 2006-05-09.

The NX motors can be used with a supply voltage up to 500 V under the following conditions:

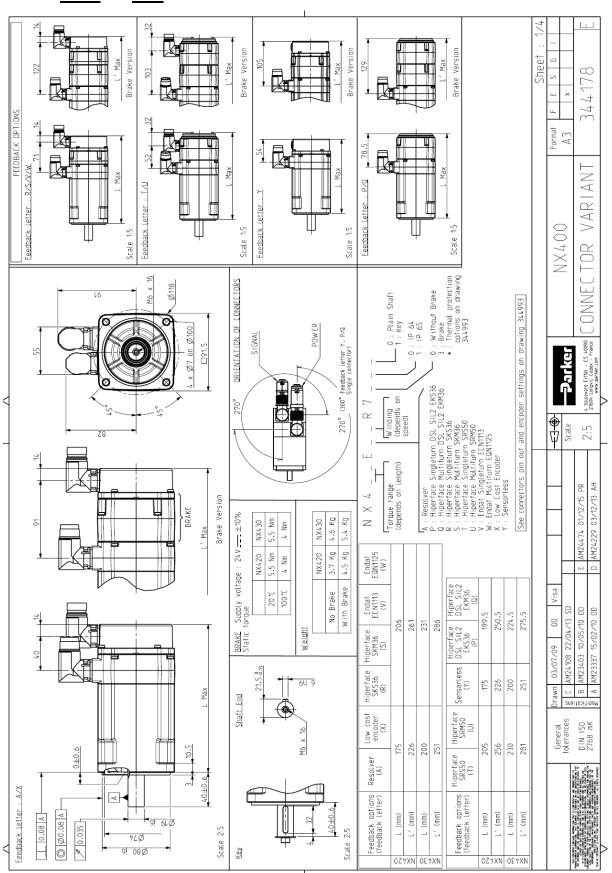

- The pulse rise times must be longer than 50 ns.
- The repetitive pulse voltages must not exceed the values given in figure 1, "Curve NX motors" in dark blue.



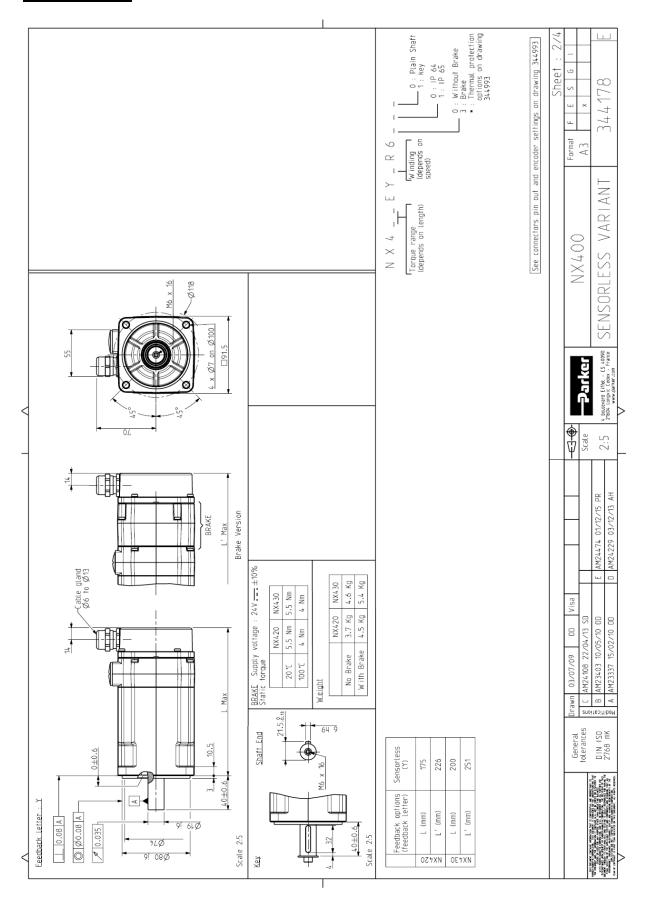

# 3.3. Dimension drawings



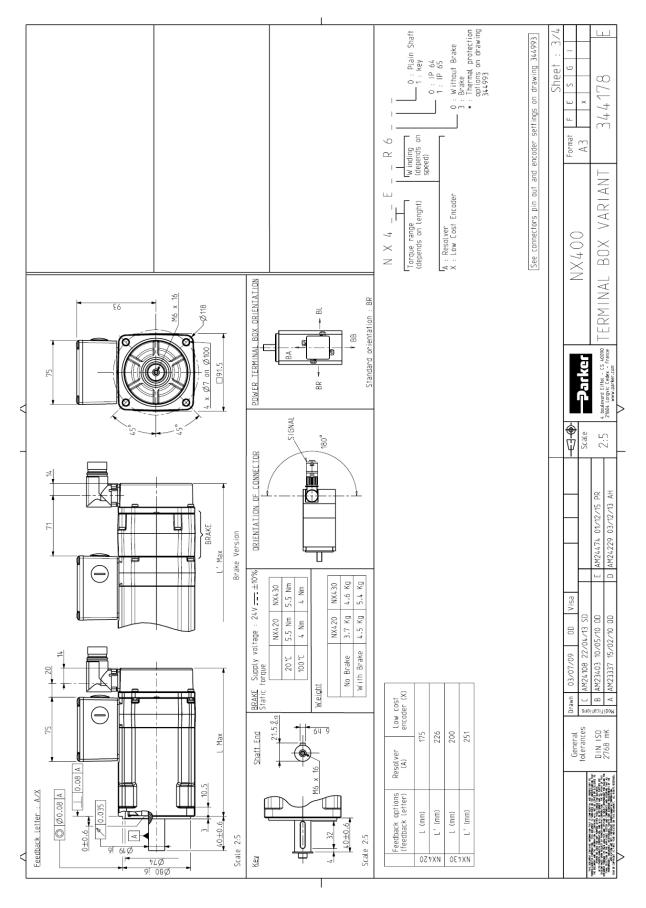




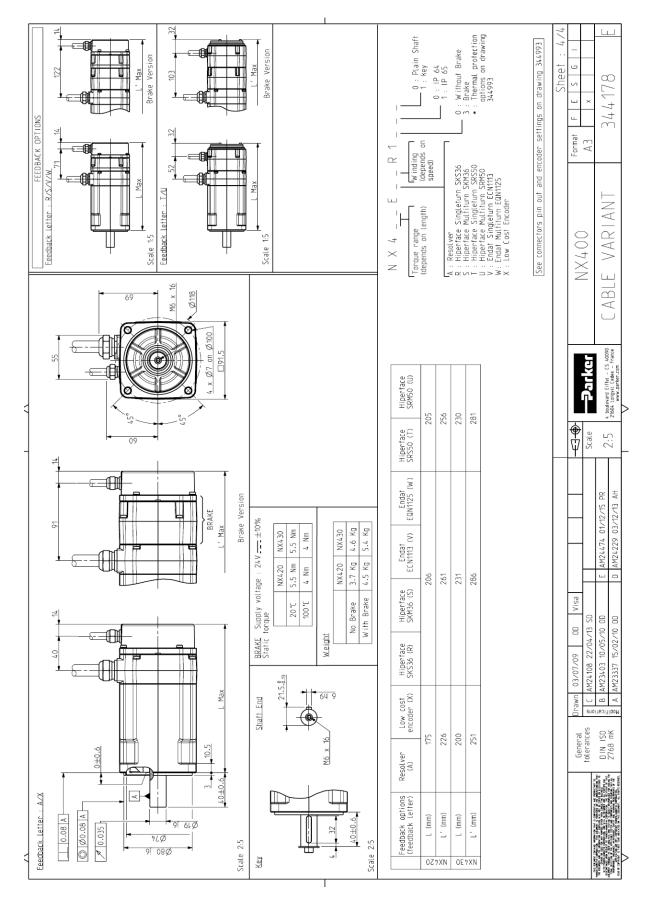




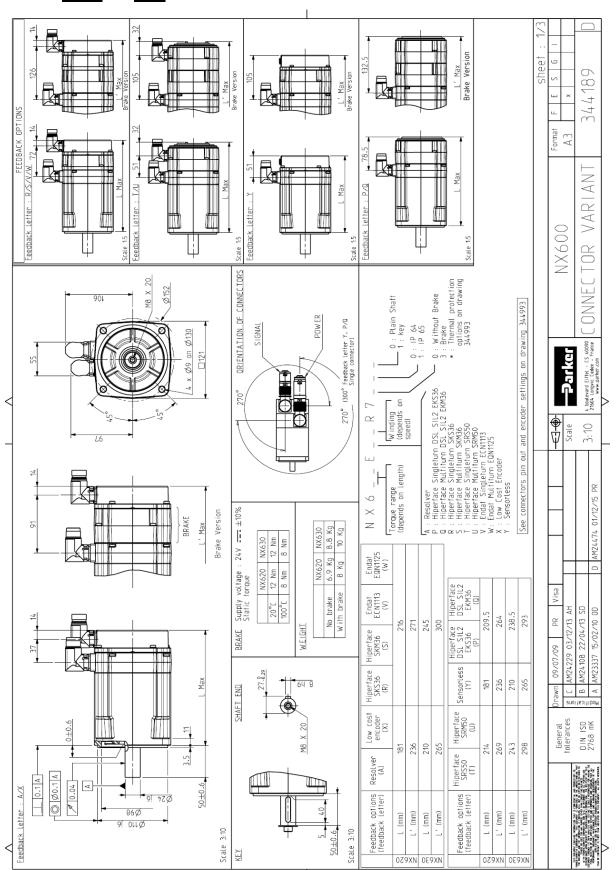


# 3.3.2. NX4



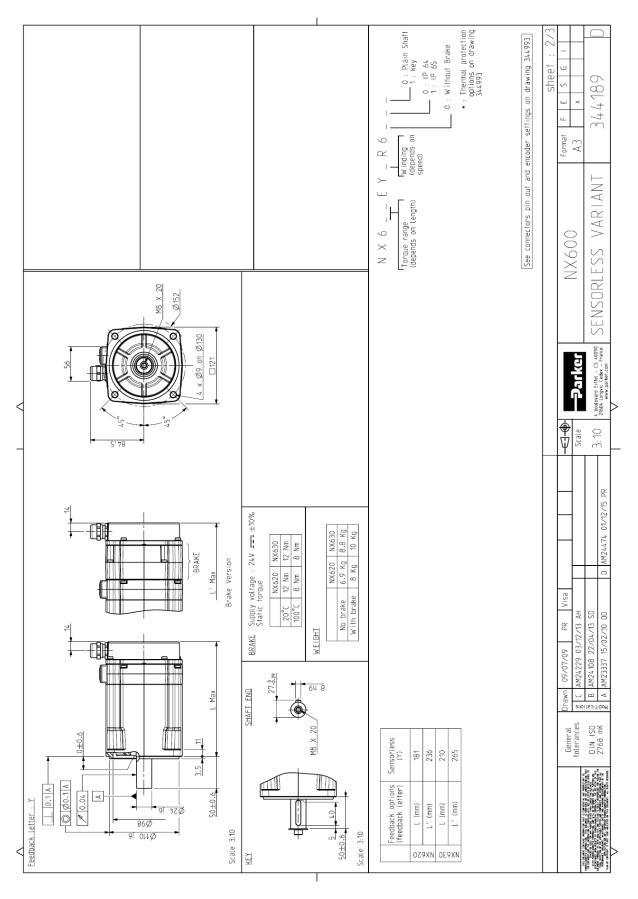




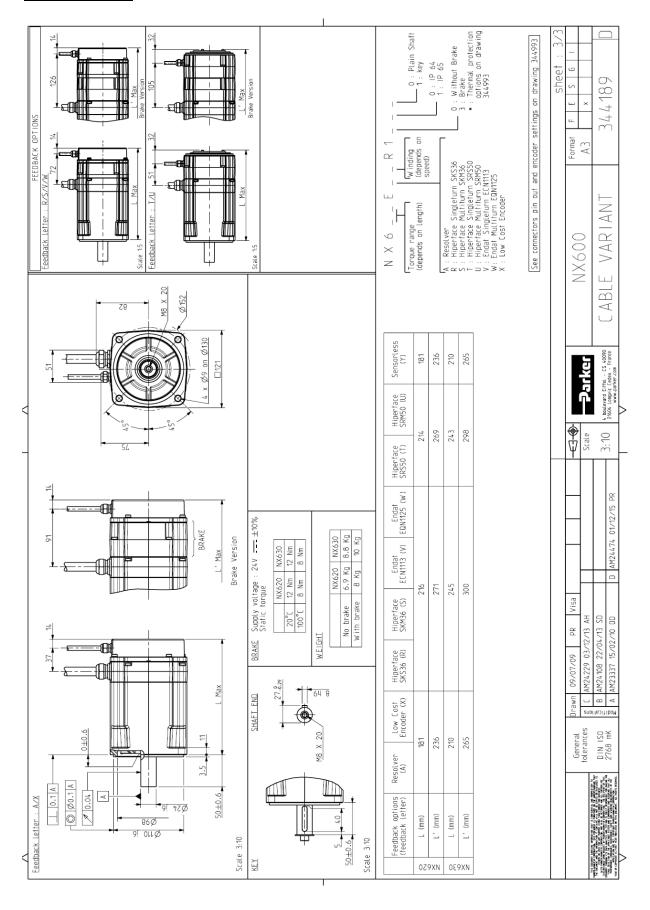




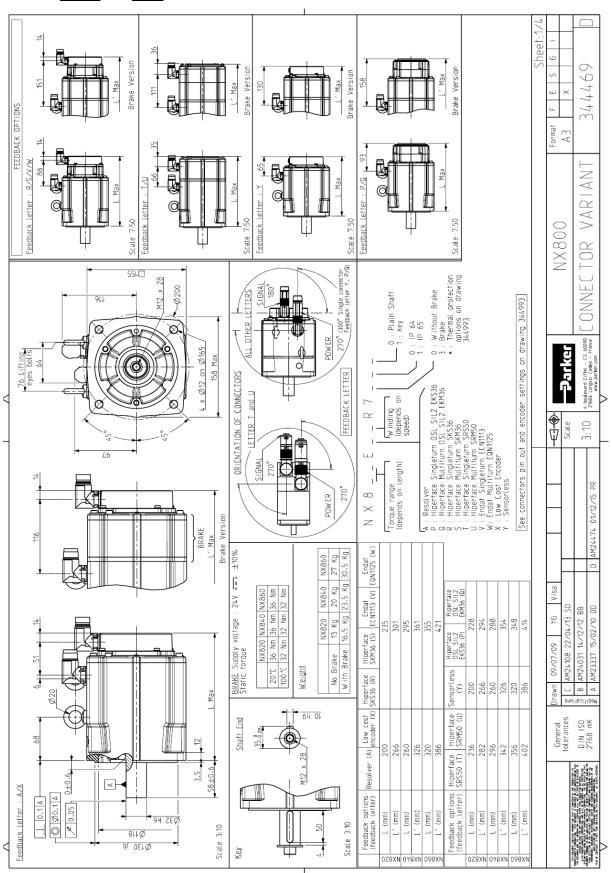





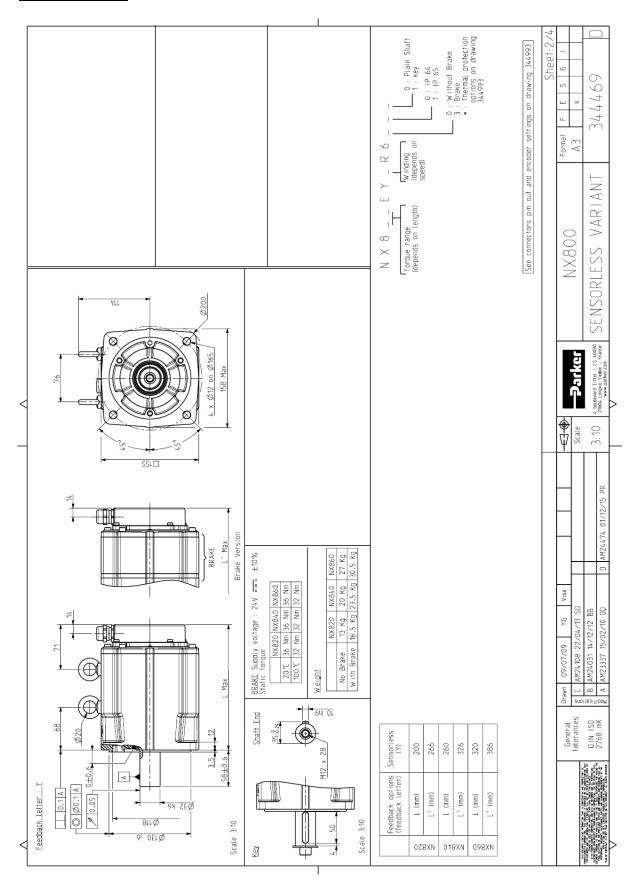


## 3.3.3. NX6



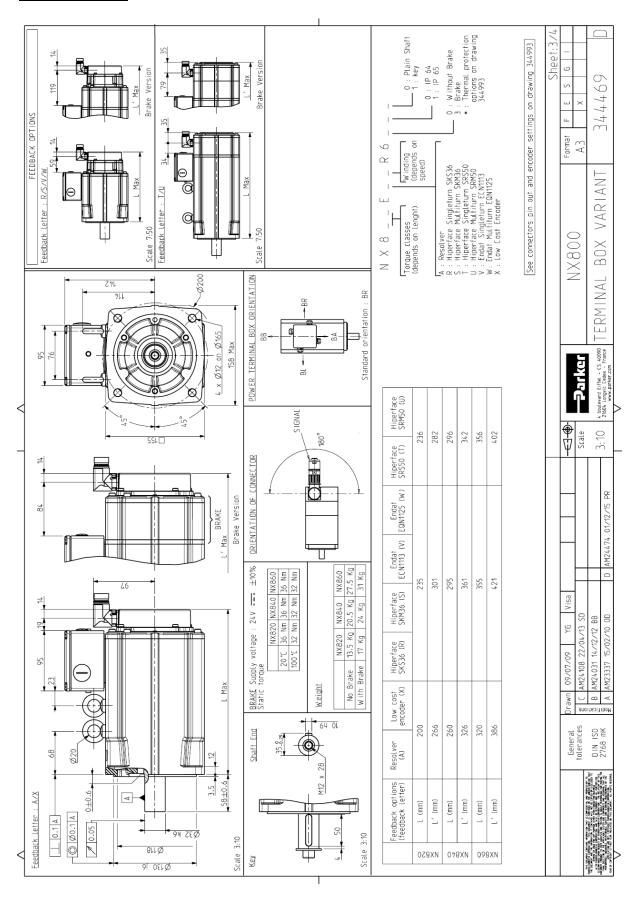




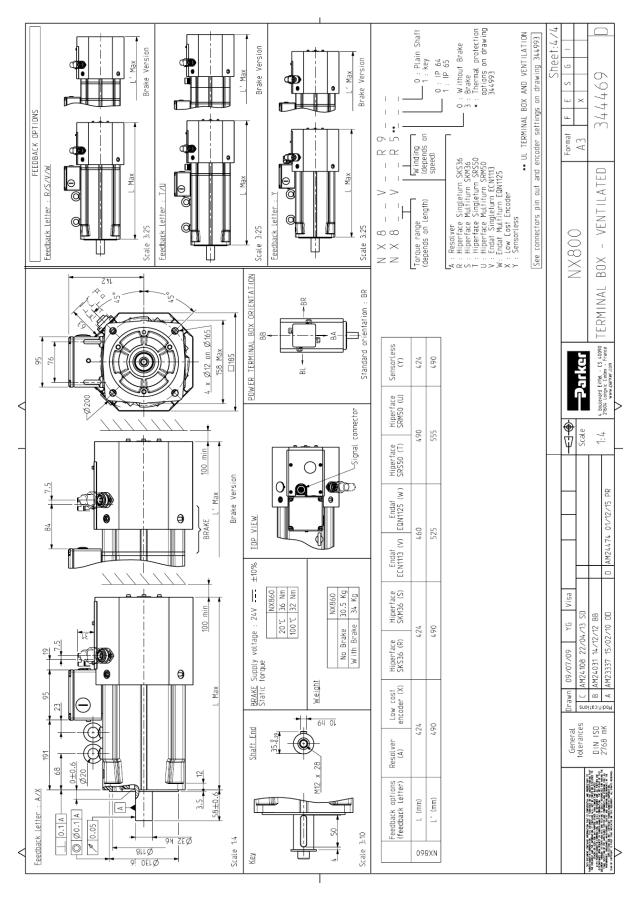




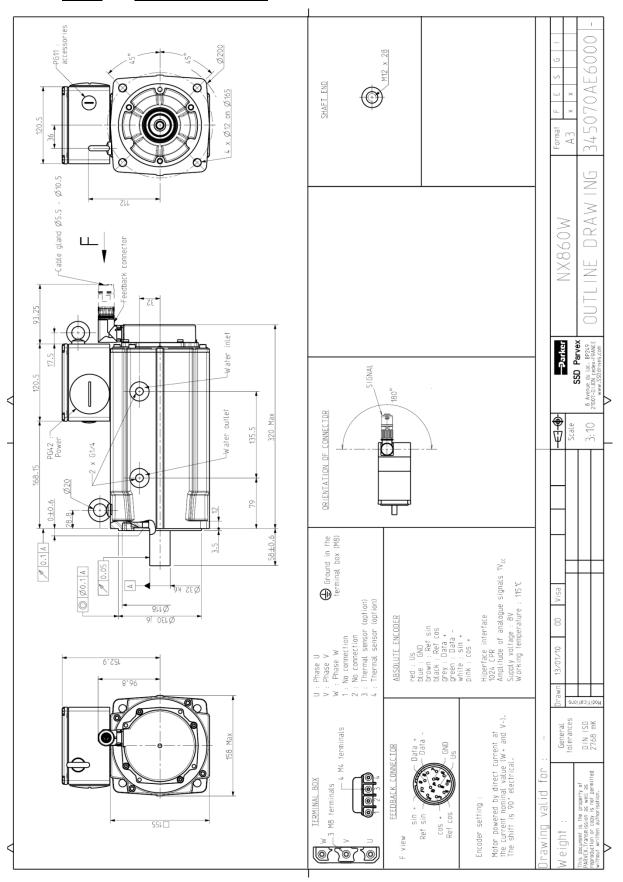


## 3.3.4. NX8









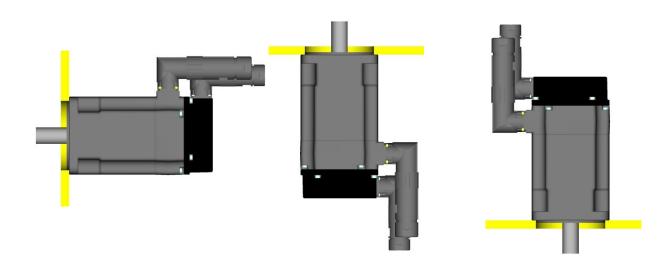



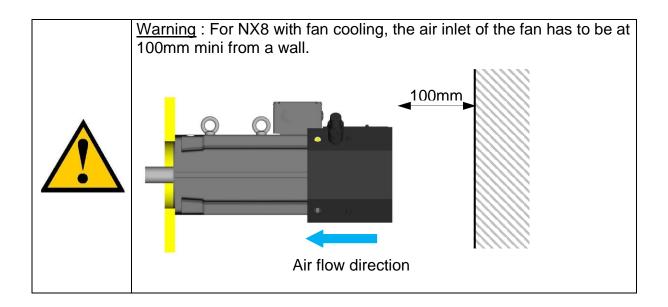







# 3.3.5. NX8 water cooled




# 3.4. Motor Mounting

# 3.4.1. Motor mounting

By flange in any direction







#### 3.4.2. Frame recommendation



<u>Warning</u>: The user has the entire responsibility to design and prepare the support, the coupling device, shaft line alignment, and shaft line balancing.

Foundation must be even, sufficiently rigid and shall be dimensioned in order to avoid vibrations due to resonances.

The servomotors need a rigid support, machined and of good quality.

The maximum flatness of the support has to be lower than 0.05mm.

The motor vibration magnitudes in rms value are in accordance with IEC 60034-14 – grade A:

maximum rms vibration velocity for NX is 1.3mm/s for rigid mounting



Warning: A grade A motor (according to IEC 60034-14) well-balanced, may exhibit large vibrations when installed in-situ arising from various causes, such as unsuitable foundations, reaction of the driven motor, current ripple from the power supply, etc. Vibration may also be caused by driving elements with a natural oscillation frequency very close to the excitation due to the small residual unbalance of the rotating masses of the motor. In such cases, checks should be carried out not only on the machine, but also on each element of the installation. (See ISO 10816-3).



<u>Warning</u>: A bad setting of the electronic control of the close loop (gain too high, incorrect filtring ...) can occur an instability of the shaft line, vibration or/and breakdown - . Please consult us



#### 3.5. Shaft Loads

#### 3.5.1. Vibration resistance to shaft end

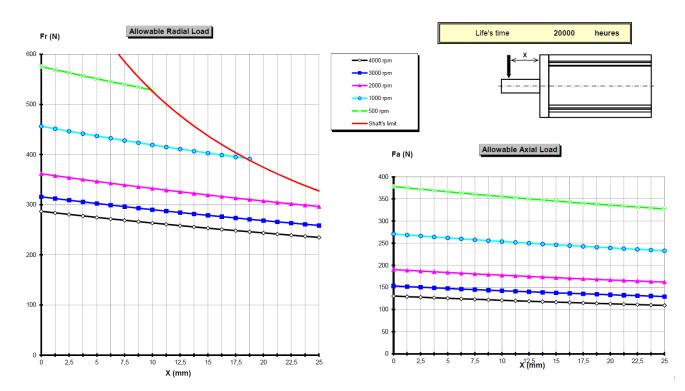
Frequency domain :10 to 55 Hz according to EN 60068 -2-6 Vibration resistance to the shaft end :

- radial 3 g
- axial 1 g

#### 3.5.2. Motors life time for horizontal mounting

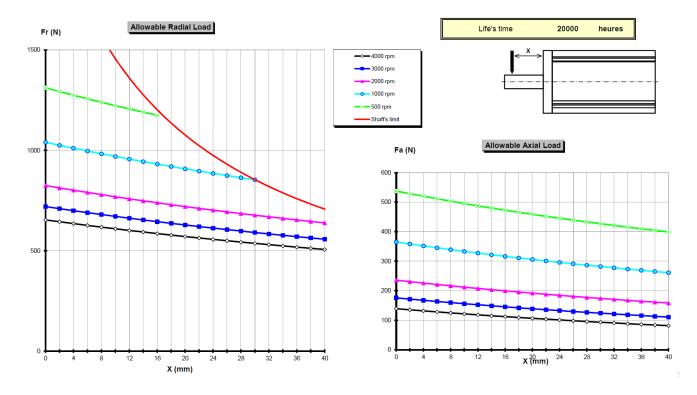


The bearing arrangement is made with 2 ball bearings (one on the shaft end + another on the rear). The rear bearing is blocked in axial translation and the front one is free in translation to avoid any stress from the shaft thermal expansion during the running.

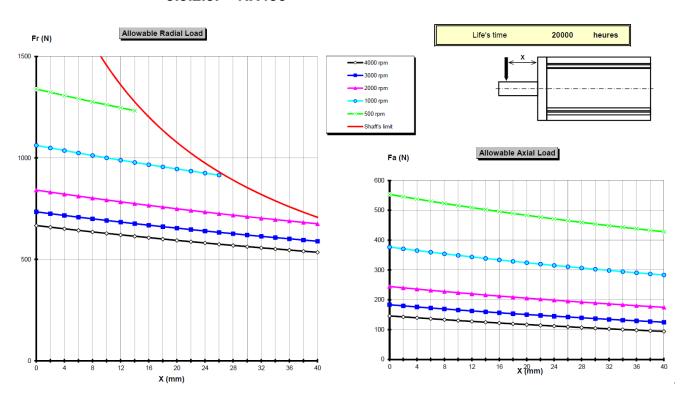

So, it is important not to block in translation the shaft expansion by any extra bearing or similar device.



Notice: Curves below are valid only for horizontal mounting and a life time L10 of 20 000h at constant speed in accordance with ISO281.

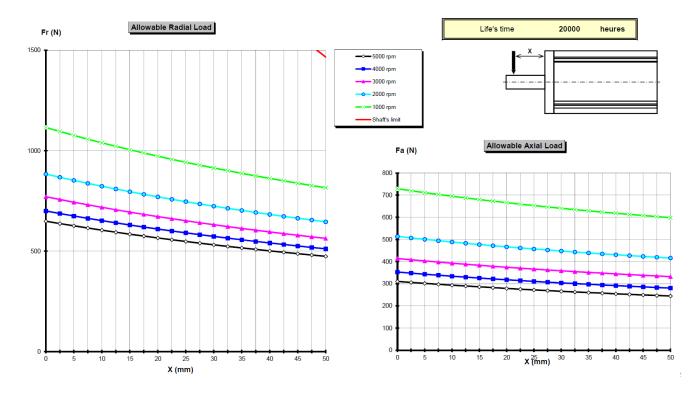

Notice: Radial and Axial Loads are not additive

#### 3.5.2.1. NX310

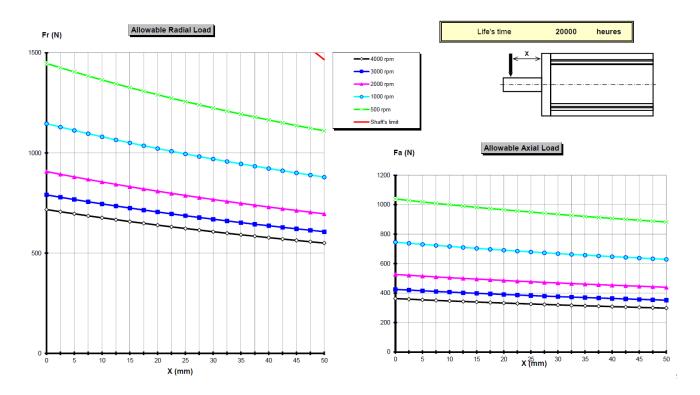





3.5.2.2. NX420

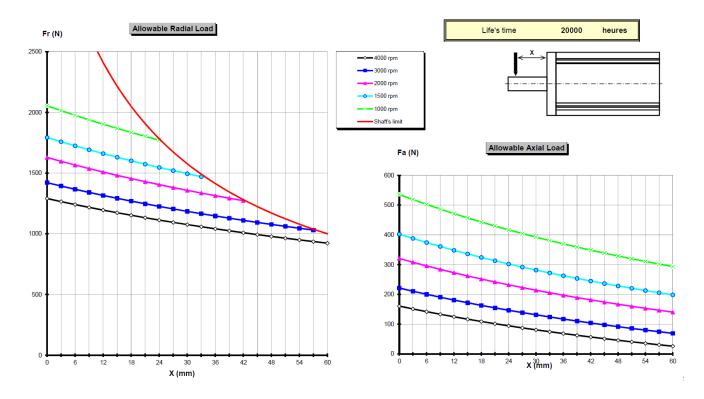



3.5.2.3. NX430

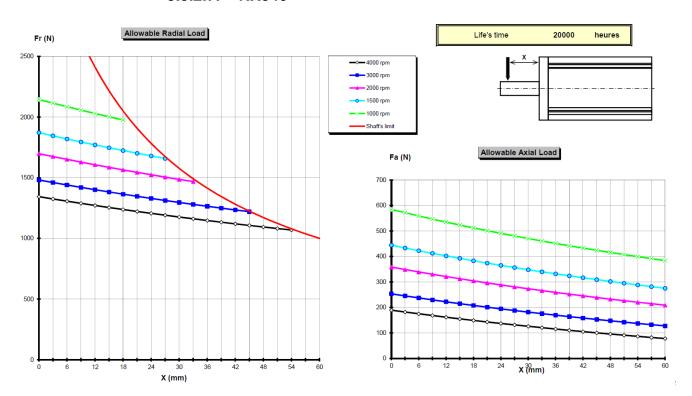





3.5.2.4. NX620

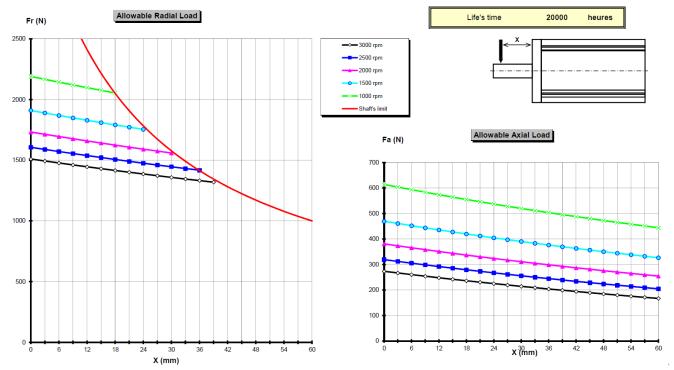



3.5.2.5. NX630






3.5.2.6. NX820




3.5.2.7. NX840





3.5.2.8. NX860





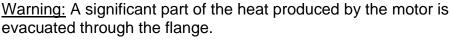
# 3.6. Cooling

In compliance with the IEC 60034-1 standards:

#### 3.6.1. Natural and fan cooled motor

The ambient air temperature shall not be less than -15°C and more than 40°C.




It is possible to use the motors in an higher ambient temperature but with an associated derating to the motor performances.



<u>Warning:</u> To reach the motor performances calculated, the motor must be thermally well connected to a aluminium flange with a dimension of 400 mm x 400 mm and with a thickness of 12 mm.



<u>Caution:</u> the ambient air temperature shall not exceed 40°C in the vicinity of the motor flange





- if the air is not able to circulate freely around the motor,
- if the motor is mounted on a surface that dissipates not well the heating (surface with little dimensions for instance),
- if the motor is thermally isolated,
- if the motor is mounted on a warm surface (mounted on a gearbox for instance),

then the motor has to be used at a torque less than the rated torque.



#### 3.6.2. Fan cooled motor

The ambient air temperature shall not be less than -15°C and more than 40°C.



It is possible to use the motors in an higher ambient temperature but with an associated derating to the motor performances.



<u>Warning:</u> To reach the motor performances calculated, the motor must be thermally well connected to a aluminium flange with a dimension of 400 mm x 400 mm and with a thickness of 12 mm.



<u>Caution:</u> the ambient air temperature shall not exceed 40°C in the vicinity of the motor flange

# Air Flow

The air flow is in direction of the shaft end:



#### Fan power supply

The power supply of the fan is

- Voltage: 3x 400 VAC

- Power : 40W

- Intensity:0,11 Amps.



#### 3.6.3. Water cooled motor



<u>Danger:</u> The cooling system has to be operational when the motor is running or energized.



<u>Danger:</u> The Inlet temperature and the water flow have to be monitored to avoid any exceeding values.



<u>Caution:</u> When motor is not running, the cooling system has to be stopped 10 minutes after motor shut down.



<u>Caution:</u> Condensation and risk of rust may occur when the temperature gradient between the air and the water becomes significant. Condensation is also linked to hygrometry rate.

To avoid any issue, we recommend:  $T_{water} > T_{air} - 2^{\circ}C$ .

The motor can be used with an ambient temperature between 27°C to 40°C with a high water temperature but with derating.

If inlet water temperature becomes higher than 25°C, derating factor must be applied according to §3.1.2 Temperature Derating



<u>Caution:</u> the ambient air temperature shall not exceed 40°C in the vicinity of the motor flange



<u>Danger:</u> If the water flow stops, the motor can be damaged or destroyed causing accidents.



#### 3.6.4. Additives for water as cooling media

Please refer to motor technical data for coolant flow rates.

The water inlet temperature must not exceed **25°C** without torque derating. The water inlet temperature must not be below **5°C**.

The inner pressure of the cooling liquid must not exceed **5 bars**.



<u>Caution:</u> To avoid the appearance of corrosion of the motor cooling system, the water must have anti-corrosion additive.

The servomotors are water cooled. Corrosion inhibitors must be added to the water to avoid the corrosion. The complete cooling system must be taken into account to choose the right additive, this includes: the different materials in the cooling circuit, the chiller manufacturer recommendations, the quality of the water...

The right additive solution is under the responsibility of the user. Some additives like TYFOCOR or GLYSANTIN G48 correctly used have demonstrated their ability to prevent corrosion in a closed cooling circuit.

For example: Glysantin G48 recommendations are:

- Water hardness: 0 to  $20^{\circ}$ dH (0 3.6 mmol/l)
- Chloride content: max. 100ppmSulphate content: max. 100ppm



<u>Caution:</u> The water quality is very important and must comply with supplier recommendations. The additive quantity and periodic replacement must respect the same supplier recommendations.



<u>Caution:</u> The additive choice must take into account the global cooling system (chiller or water exchanger recommendations...).



Select carefully the materials of all the cooling system parts (chiller, exchanger, hoses, adapters and fittings) because the difference between material galvanic potential can make corrosion.



# 3.6.5. Motor cooling circuit drop pressure

The tab below describes the drop pressure at the water flow rate from the motor data:

| Motor type | Drop pressure @ nominal water flow |
|------------|------------------------------------|
| NX860W     | 0.3 bar @ 5 l/min                  |

Note: all motors drop pressure are checked before shipping.

# 3.6.6. Chiller selection

This section describes how to choose the chiller. The chiller is able to evacuate the heat from the motor losses with the water circulation.

The motor losses (= power to evacuate by the chiller) depend on the efficiency and motor power:

$$Pc = \left(\frac{1}{\rho} - 1\right) Pn$$

With Pc: Power to evacuate by the chiller (kW)

Pn: Nominal motor power (kW)

ρ: motor efficiency at nominal power (%)

Refer to the respective motor data sheet for nominal power, efficiency and water flow. Chiller pump must provide water flow through motor and pipe pressure drop. Inlet temperature must be inferior to **25°C**.

#### Example

Motor: NX860W

For a torque of 80 N.m @ 2500 rpm, the efficiency is 92%.

Water flow = 5 l/min

$$Pn = 80 \times 2500 \times \pi/30$$

$$Pn = 20.9 \, kW$$

$$Pc = \left(\frac{1}{0.92} - 1\right).20.9 = 1.8 \text{ kW}$$

So, the chiller must evacuate 1.8 kW and has a water flow of 5 l/min for this point of running.



# 3.6.7. Flow derating according to glycol concentration

|                   | Glycol concentration [%] |       |       |       |       |       |
|-------------------|--------------------------|-------|-------|-------|-------|-------|
|                   | 0                        | 10    | 20    | 30    | 40    | 50    |
|                   | 5                        | 5.1   | 5.3   | 5.6   | 5.9   | 6.2   |
|                   | 10                       | 10.2  | 10.6  | 11.1  | 11.8  | 12.4  |
|                   | 15                       | 15.3  | 15.9  | 16.7  | 17.6  | 18.7  |
|                   | 20                       | 20.4  | 21.2  | 22.2  | 23.5  | 24.9  |
|                   | 25                       | 25.5  | 26.5  | 27.8  | 29.4  | 31.1  |
|                   | 30                       | 30.6  | 31.8  | 33.4  | 35.3  | 37.3  |
|                   | 35                       | 35.7  | 37.1  | 38.9  | 41.1  | 43.6  |
|                   | 40                       | 40.8  | 42.4  | 44.5  | 47.0  | 49.8  |
|                   | 45                       | 45.9  | 47.7  | 50.0  | 52.9  | 56.0  |
|                   | 50                       | 51.0  | 53.0  | 55.6  | 58.8  | 62.2  |
|                   | 55                       | 56.1  | 58.3  | 61.2  | 64.7  | 68.4  |
|                   | 60                       | 61.2  | 63.5  | 66.7  | 70.5  | 74.7  |
| in.               | 65                       | 66.4  | 68.8  | 72.3  | 76.4  | 80.9  |
| Flow rate [I/min] | 70                       | 71.5  | 74.1  | 77.8  | 82.3  | 87.1  |
| je [              | 75                       | 76.6  | 79.4  | 83.4  | 88.2  | 93.3  |
| rat               | 80                       | 81.7  | 84.7  | 89.0  | 94.1  | 99.5  |
| WO                | 85                       | 86.8  | 90.0  | 94.5  | 99.9  | 105.8 |
| Ę                 | 90                       | 91.9  | 95.3  | 100.1 | 105.8 | 112.0 |
|                   | 95                       | 97.0  | 100.6 | 105.6 | 111.7 | 118.2 |
|                   | 100                      | 102.1 | 105.9 | 111.2 | 117.6 | 124.4 |
|                   | 110                      | 112.3 | 116.5 | 122.3 | 129.3 | 136.9 |
|                   | 120                      | 122.5 | 127.1 | 133.4 | 141.1 | 149.3 |
|                   | 130                      | 132.7 | 137.7 | 144.6 | 152.8 | 161.8 |
|                   | 140                      | 142.9 | 148.3 | 155.7 | 164.6 | 174.2 |
|                   | 150                      | 153.1 | 158.9 | 166.8 | 176.3 | 186.6 |
|                   | 160                      | 163.3 | 169.5 | 177.9 | 188.1 | 199.1 |
|                   | 170                      | 173.5 | 180.1 | 189.0 | 199.9 | 211.5 |
|                   | 180                      | 183.7 | 190.6 | 200.2 | 211.6 | 224.0 |
|                   | 190                      | 194.0 | 201.2 | 211.3 | 223.4 | 236.4 |
|                   | 200                      | 204.2 | 211.8 | 222.4 | 235.1 | 248.9 |

# Use of the table above - Example

If the motor needs 25 I/min with 0% glycol,

If application needs 20% glycol, the water flow must be 26.5 I/min, If application needs 40% glycol, the water flow must be 29.4 I/min.



# **Main formulas**

$$Flow\_rate = \frac{Power\_dissipation*60}{\Delta\theta^{\circ}*C_{p}}$$

With: Flow rate [I/min]

Power\_dissipation [W]

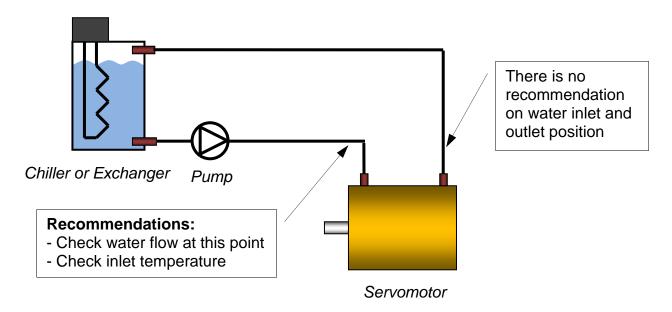
 $\Delta\theta^{\circ}$  Gradient inlet-outlet [°C]

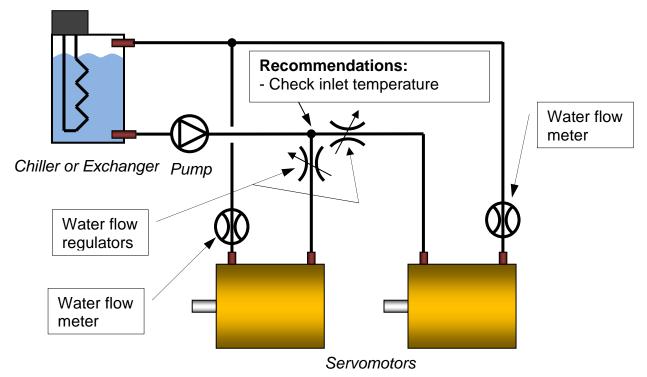
**Cp** thermal specific capacity of the water as coolant [J/kg°K] (**Cp** depends on the % glycol concentration please see below)

# Thermal specific capacity *Cp* according to % glycol concentration and temperature

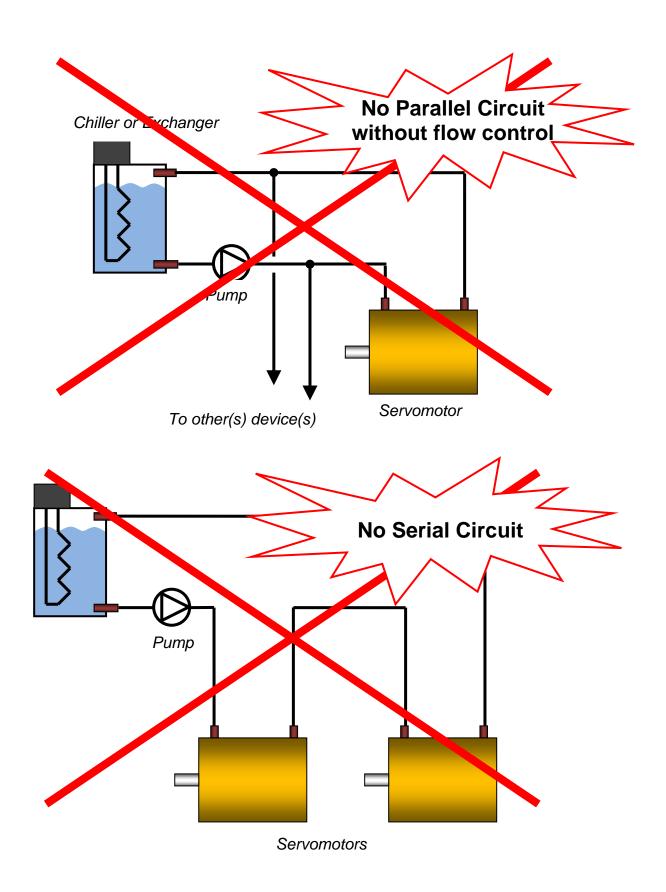
We have considered an average temperature of the coolant of 30°C.

| Glycol concentration | Average temperature of the water as | Thermal specific capacity of the |  |
|----------------------|-------------------------------------|----------------------------------|--|
| [%]                  | coolant [°C]                        | water <i>Cp</i> [J/kg°K]         |  |
| 0                    | 30                                  | 4176                             |  |
| 30                   | 30                                  | 3755                             |  |
| 40                   | 30                                  | 3551                             |  |
| 50                   | 30                                  | 3354                             |  |





## 3.6.8. Water cooling diagram




<u>Recommendation:</u> The use of a filter allows to reduce the presence of impurities or chips in the water circuit in order to prevent its obstruction. We recommend 0.1mm filter.

This section shows typical water cooling diagram:







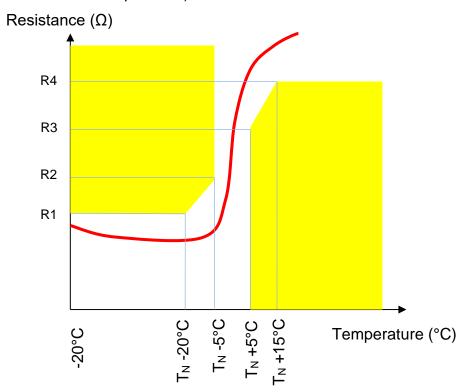




#### 3.7. Thermal Protection

Different protections against thermal overloading of the motor are proposed as an option: Thermoswitch, PTC thermistors or KTY temperature built into the stator winding. No thermal protection are available for the NX1 motor

The thermal sensors, due to their thermal inertia, are unable to follow very fast winding temperature variations. They acheive their thermal steady state after a few minutes.



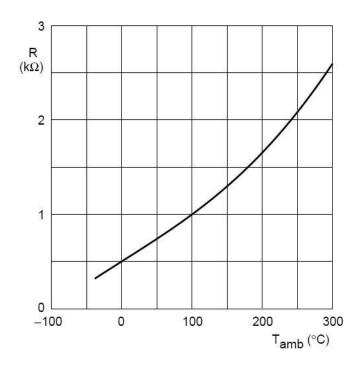

Warning: To protect correctly the motor against very fast overload, please refer to 3.1.6. Peak current limitations

## 3.7.1. Alarm tripping with PTC thermistors :

One thermal probe (PTC thermistors) fitted in the NX servomotor winding trip the electronic system at  $150^{\circ} \pm 5^{\circ}$  C for class F version. When the rated tripping temperature is reached, the PTC thermistor undergoes a step change in resistance. This means that a limit can be easily and reliably detected by the drive.

The graph and tab below shows PTC sensor resistance as a function of temperature  $(T_N \text{ is nominal temperature})$ 




| Temperature                      | Resistance value |
|----------------------------------|------------------|
| -20°C up to T <sub>N</sub> -20°C | R1≤750Ω          |
| TNF-5°C                          | R2≤1650Ω         |
| TNF+5°C                          | R3≥3990Ω         |
| TNF+15°C                         | R4≥12000Ω        |



#### 3.7.2. Temperature measurement with KTY sensors:

Motor temperature can also be continuously monitored by the drive using a KTY 84-130 thermal sensor built in to the stator winding. KTY sensors are semiconductor sensors that change their resistance according to an approximately linear characteristic. The required temperature limits for alarm and tripping can be set in the drive.

The graph below shows KTY sensor resistance vs temperature, for a measuring current of 2 mA:





<u>Warning:</u> KTY sensor is sensitive to electrostatic discharge. So, always wear an antistatic wrist strap during KTY handling.



Warning: KTY sensor is polarized. Do not invert the wires.



<u>Warning</u>: KTY sensor is sensitive. Do not check it with an Ohmmeter or any measuring or testing device.



# 3.8. Power Electrical Connections

#### 3.8.1. Wires sizes



In every country, you must respect all the local electrical installation regulations and standards.

Not limiting example in France: NFC 15-100 or IEC 60364 as well in Europe.



Cable selection depends on the cable construction, so refer to the cable technical documentation to choose wire sizes



Some drives have cable limitations or recommendations; please refer to the drive technical documentation for any further information.

#### Cable selection



At standstill, the current must be limited at 80% of the low speed current  $I_0$  and cable has to support peak current for a long period. So, if the motor works at standstill, the current to select wire size is  $\sqrt{2} \times 0.8$  lo  $\cong 1,13 \times I_0$ .

Sizes for H07 RN-F cable, for a 3 cores in a cable tray at 30°C max

| Section | l <sub>max</sub>    |  |
|---------|---------------------|--|
| [mm²]   | [A <sub>rms</sub> ] |  |
| 1.5     | 17                  |  |
| 2.5     | 23                  |  |
| 4       | 31                  |  |
| 6       | 42                  |  |
| 10      | 55                  |  |
| 16      | 74                  |  |
| 25      | 97                  |  |
| 35      | 120                 |  |
| 50      | 146                 |  |
| 70      | 185                 |  |
| 95      | 224                 |  |
| 120     | 260                 |  |
| 150     | 299                 |  |
| 185     | 341                 |  |
| 240     | 401                 |  |
| 300     | 461                 |  |



## Example of sizes for H07 RN-F cable :

Conditions of use:

Case of 3 conductors type H07 RN-F: 60°C maximum

Ambient temperature: 30°C

Cable runs on dedicated cables ways

Current limited to 80%\*I<sub>0</sub> at low speed or at motor stall.

Example:

lo=100 Arms

Permanent current at standstill: 80 Arms

Max permanent current in the cable = 113 Arms

Cable section selection = 35mm<sup>2</sup> for a 3 cores in a cable tray at 30°C max.

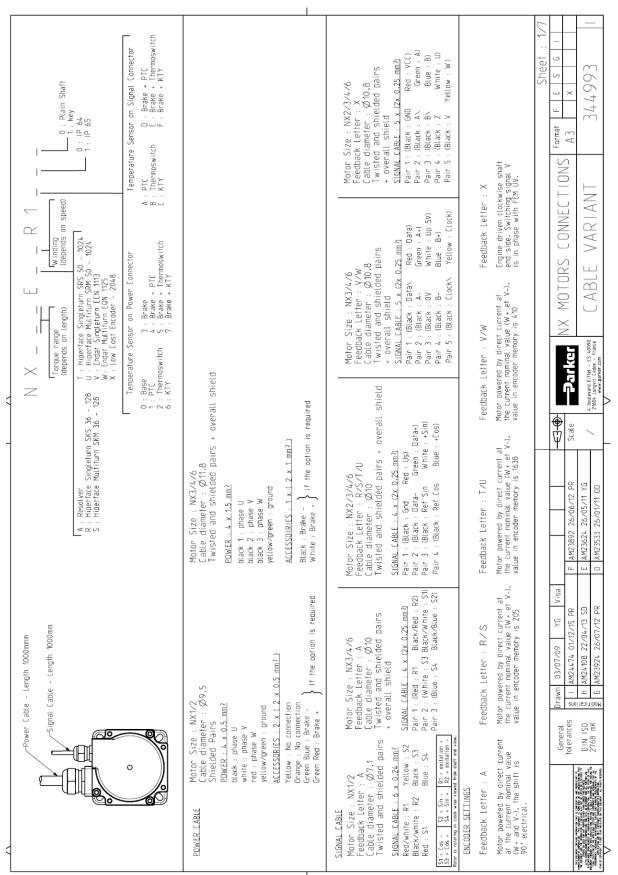
You also have to respect the Drive commissioning manual and the cables current densities or voltage specifications

## 3.8.2. Conversion Awg/kcmil/mm<sup>2</sup>:

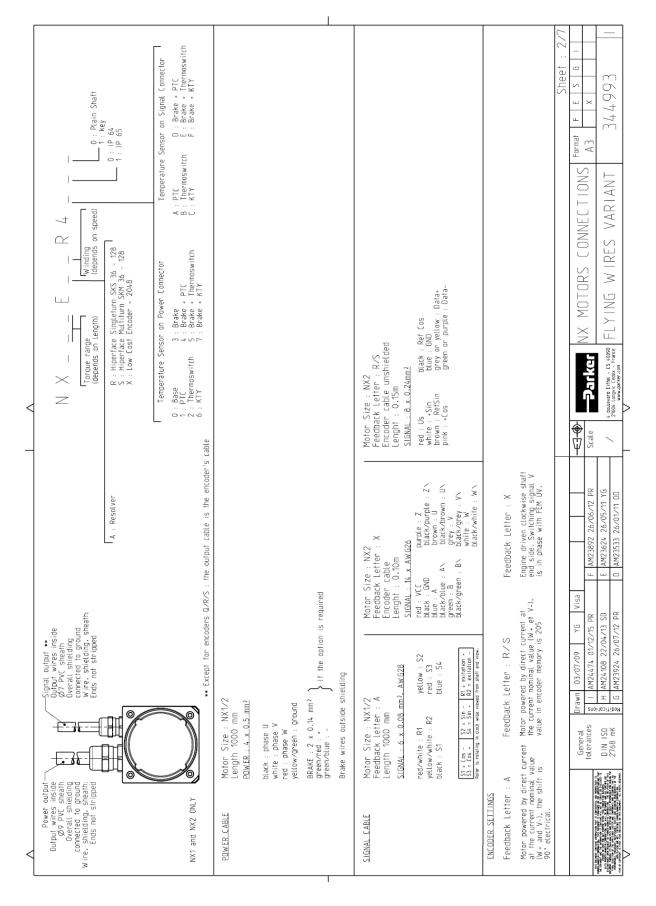
| Awg              | kcmil | mm²  |
|------------------|-------|------|
|                  | 500   | 253  |
|                  | 400   | 203  |
|                  | 350   | 177  |
|                  | 300   | 152  |
|                  | 250   | 127  |
| 0000 (4/0)       | 212   | 107  |
| 000 (3/0)        | 168   | 85   |
| 00 (2/0)         | 133   | 67.4 |
| 0 (1/0)          | 106   | 53.5 |
| 1                | 83.7  | 42.4 |
| 2                | 66.4  | 33.6 |
| 3                | 52.6  | 26.7 |
| 2<br>3<br>4<br>5 | 41.7  | 21.2 |
| 5                | 33.1  | 16.8 |
| 6                | 26.3  | 13.3 |
| 7                | 20.8  | 10.5 |
| 8                | 16.5  | 8.37 |
| 9                | 13.1  | 6.63 |
| 10               | 10.4  | 5.26 |
| 11               | 8.23  | 4.17 |
| 12               | 6.53  | 3.31 |
| 14               | 4.10  | 2.08 |
| 16               | 2.58  | 1.31 |
| 18               | 1.62  | 0.82 |
| 20               | 1.03  | 0.52 |
| 22               | 0.63  | 0.32 |
| 24               | 0.39  | 0.20 |
| 26               | 0.26  | 0.13 |



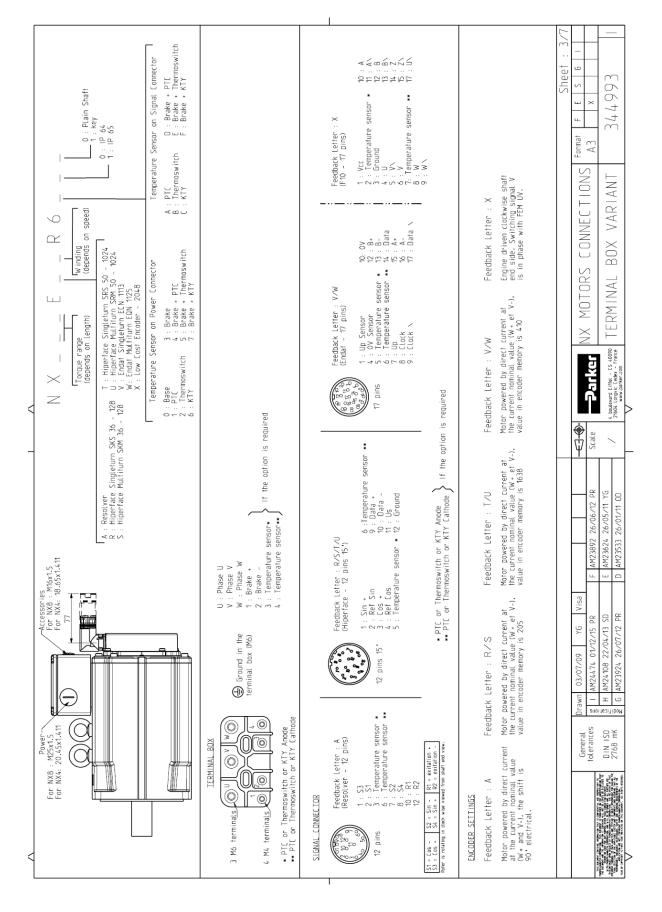
### 3.8.3. Motor cable length


For motors windings which present low inductance values or low resistance values, the own cable inductance, respectively own resistance, in case of large cable length can greatly reduce the maximum speed of the motor. Please contact PARKER for further information.

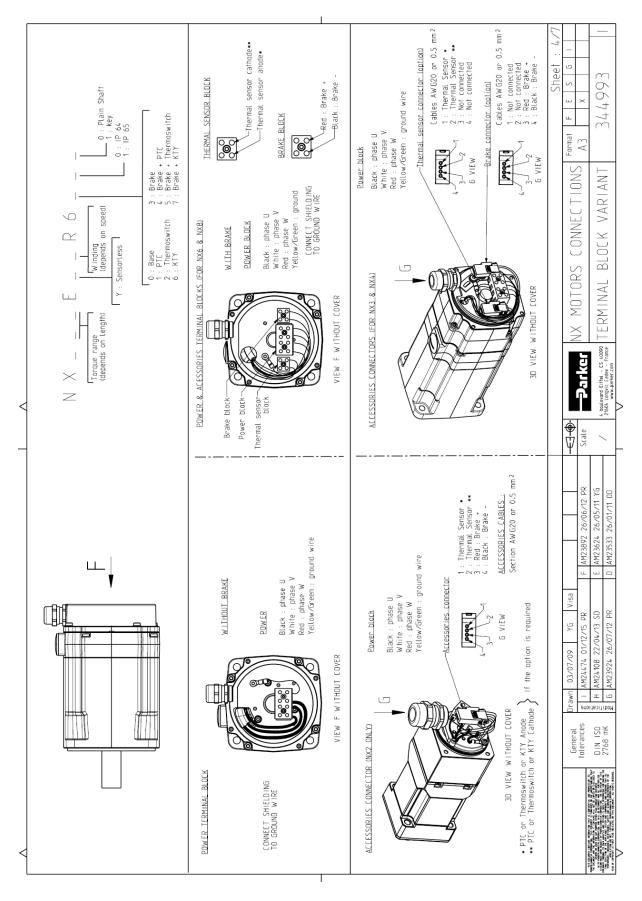



<u>Caution:</u> It might be necessary to fit a filter at the servo-drive output if the length of the cable exceeds 25 m. Consult us.

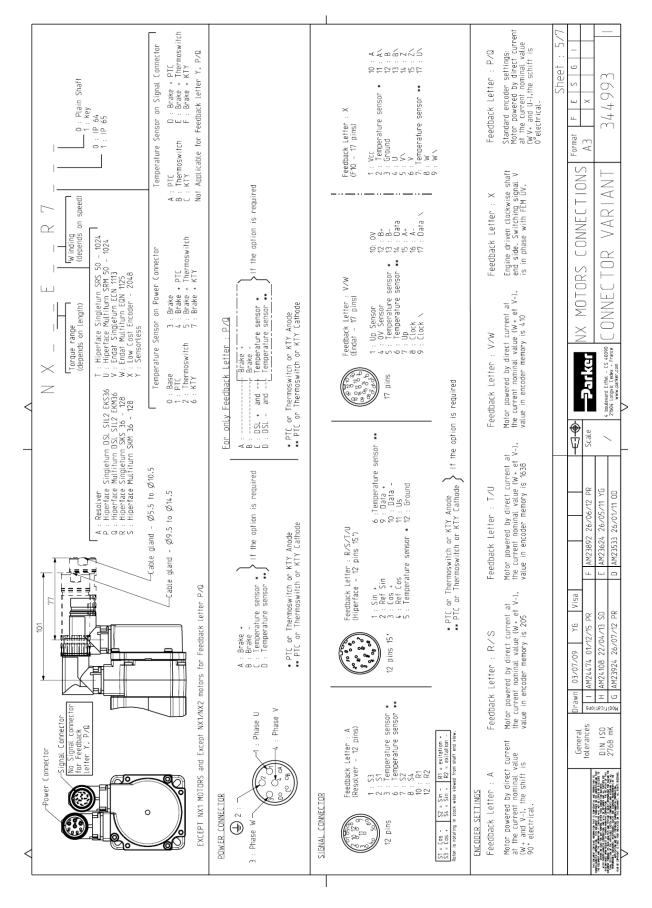



# 3.8.4. Mains supply connection diagrams

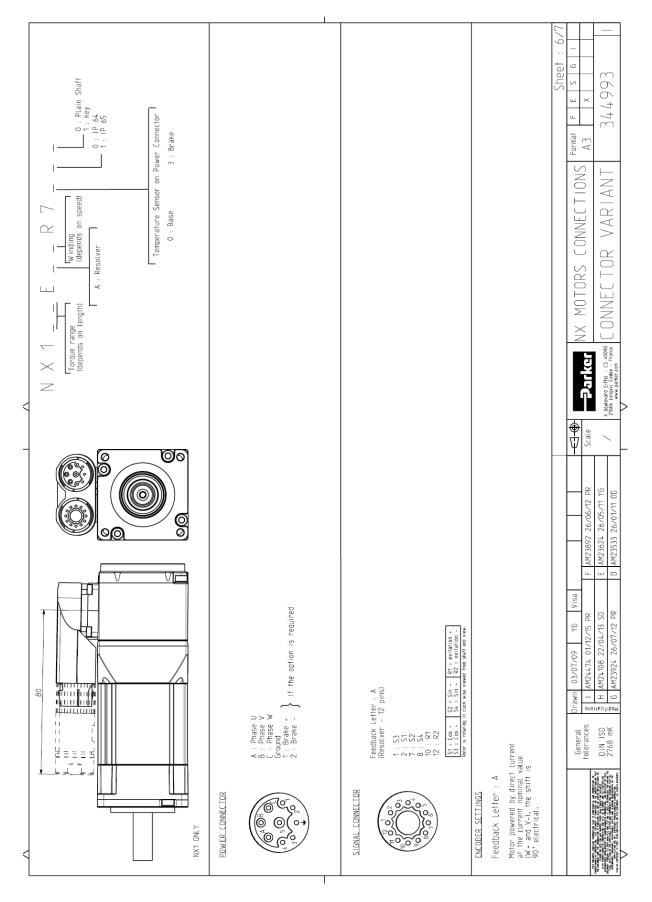




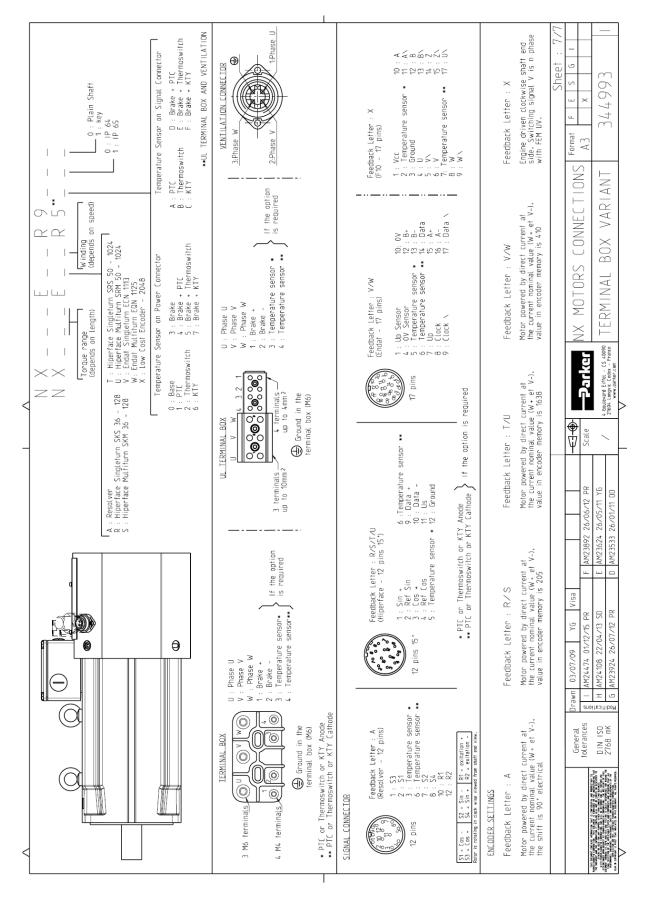



















# 3.9. Feedback system

# 3.9.1. Resolver 2 poles transformation ratio = 0.5 – code A

|                                                                                | NX3                  | NX4, NX6 & NX8 |  |
|--------------------------------------------------------------------------------|----------------------|----------------|--|
| Parker part number                                                             | 220005P1001          | 220005P1002    |  |
| Electrical specification                                                       | Values @ 8 kHz       |                |  |
| Polarity                                                                       | 2 poles              |                |  |
| Input voltage                                                                  | 7 Vrms               |                |  |
| Input current                                                                  | 86mA maximum         |                |  |
| Zero voltage                                                                   | 20mV maximum         |                |  |
| Encoder accuracy                                                               | ± 10' maxi           |                |  |
| Ratio                                                                          | 0,5 ± 5 %            |                |  |
| Output impedance (primary in short circuit whatever the position of the rotor) | Typical 120 + 200j Ω |                |  |
| Dielectric rigidity<br>(50 – 60 Hz)                                            | 500 V – 1 min        |                |  |
| Insulation resistance                                                          | ≥ 100MΩ              |                |  |
| Rotor inertia                                                                  | ~30 g.cm²            |                |  |
| Operating temperature range                                                    | -55 to +155 °C       |                |  |

# 3.9.1. <u>Incremental encoder-Commuted lines 10 poles–2048pulses–code X (On request)</u>

|                                                 | NX3, NX4, NX6 & NX8                                  |
|-------------------------------------------------|------------------------------------------------------|
| Model                                           | F10 (Hengstler)                                      |
| Туре                                            | Incremental encoder with 10 pole commutation signals |
| Parker part number                              | 220167P0003                                          |
| Line count                                      | 2048 pulses per revolution                           |
| Electrical interface                            | Line driver 26LS31                                   |
| System accuracy                                 | Incremental signals ± 2.5' commutation signals ± 6'  |
| Perating speed                                  | 5 000 rpm                                            |
| Power Supply Current consumption (without load) | 5VDC ± 10%<br>100mA                                  |
| Max pulse frequency                             | 300 kHz                                              |
| Operating temperature range                     | 0°C to +120 °C                                       |



# 3.9.2. <u>Hiperface encoder singleturn EKS36 DSL SIL2 – code P</u>

|                            | NX3, NX4, NX6 & NX8          |  |
|----------------------------|------------------------------|--|
| Model                      | EKS36 SIL2 (Sick)            |  |
| Туре                       | Absolute single turn encoder |  |
| Parker part number         | 220174P0011                  |  |
| Electrical interface       | Hiperface DSL                |  |
| Position values per        | 4096                         |  |
| revolution                 | 4090                         |  |
| Integral non-linearity     | ± 80"                        |  |
| Differential non-linearity | ± 40"                        |  |
| Perating speed             | 12 000 rpm                   |  |
| Power Supply               | 7VDC to 12VDC                |  |
| Current consumption        | Max 150mA                    |  |
| Output frequency           | 0kHz – 75kHz                 |  |
| Operating temperature      | -20°C to +115 °C             |  |
| range                      | -20 C t0 +115 C              |  |

# 3.9.3. Hiperface encoder multiturn EKM36 DSL SIL2 – code Q

|                            | NX3, NX4, NX6 & NX8         |  |
|----------------------------|-----------------------------|--|
| Model                      | EKM36 SIL2 (Sick)           |  |
| Туре                       | Absolute multi turn encoder |  |
| Parker part number         | 220174P0012                 |  |
| Electrical interface       | Hiperface DSL               |  |
| Revolutions                | 4 096                       |  |
| Integral non-linearity     | ± 80"                       |  |
| Differential non-linearity | ± 40"                       |  |
| Perating speed             | 9000 rpm                    |  |
| Power Supply               | 7VDC to 12VDC               |  |
| Current consumption        | Max 150mA                   |  |
| Output frequency           | 0kHz – 75kHz                |  |
| Operating temperature      | -20°C to +115 °C            |  |
| range                      | -20 0 to +113 0             |  |



# 3.9.4. Hiperface singleturn SKS36 SIL2 (128pulses) – code R

|                              | NX3, NX4, NX6 & NX8                                   |  |
|------------------------------|-------------------------------------------------------|--|
| Model                        | SKS36 SIL2 (Sick)                                     |  |
| Туре                         | Absolute single turn encoder                          |  |
| Parker part number           | 220174P0015                                           |  |
| Line count                   | 128 sine/cosine periods per revolution                |  |
| Electrical interface         | Hiperface                                             |  |
| Position values per          | 4096                                                  |  |
| revolution                   | 4090                                                  |  |
| Error limits for the digital | ± 320"(via RS485)                                     |  |
| absolute value               | ± 320 (VIA 113400)                                    |  |
| Integral non-linearity       | ± 80"(Error limits for evaluating sine/cosine period) |  |
| Differential non-linearity   | ± 40" (Non-linearity within a sine/cosine period)     |  |
| Perating speed               | 12 000 rpm                                            |  |
| Power Supply                 | 7VDC to 12VDC                                         |  |
| Current consumption          | 60mA                                                  |  |
| (without load)               | OOTIA                                                 |  |
| Output frequency             | 0kHz – 65kHz                                          |  |
| Operating temperature        | -20°C to +110 °C                                      |  |
| range                        | -20 0 10 +110 0                                       |  |

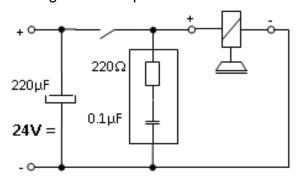
## 3.9.5. Hiperface multiturn SKM36 SIL2 (128pulses) – code S

|                                                 | NX3, NX4, NX6 & NX8                                   |
|-------------------------------------------------|-------------------------------------------------------|
| Model                                           | SKM36 SIL2 (Sick)                                     |
| Туре                                            | Absolute multi turn encoder                           |
| Parker part number                              | 220174P0016                                           |
| Line count                                      | 128 sine/cosine periods per revolution                |
| Electrical interface                            | Hiperface                                             |
| Position values per revolution                  | 4 096                                                 |
| Revolutions                                     | 4 096                                                 |
| Error limits for the digital absolute value     | ± 320"(via RS485)                                     |
| Integral non-linearity                          | ± 80"(Error limits for evaluating sine/cosine period) |
| Differential non-linearity                      | ± 40" (Non-linearity within a sine/cosine period)     |
| Perating speed                                  | 9000 rpm                                              |
| Power Supply Current consumption (without load) | 7VDC to 12VDC<br>60mA                                 |
| Output frequency                                | 0kHz – 65kHz                                          |
| Operating temperature range                     | -20°C to +110 °C                                      |



## 3.10. Brake option




<u>Caution:</u> The holding brake is used to completely immobilize the servomotor under load. It is not designed to be used for repeated dynamic braking; dynamic braking must only be used in the case of an emergency stop and with a limited occurance depending on the load inertia and speed.

The standard brake power supply is 24 Vcc DC  $\pm$  10%.

Follow the polarity and the permissible voltage, and use shielded cables.

A 220  $\mu F$  capacitor avoids untimely braking if the 24 V voltage is disturbed by the external relay. Check the voltage value once this capacitor has been fitted. The RC network (220  $\Omega$ , 0.1  $\mu F$ ) is needed to eliminate interference produced by the brake coil.

Position the contactor in the DC circuit to reduce brake response times. Follow the connection instructions taking the brake polarisation into account.



| Motor | Static<br>torque<br>@20°C | Static<br>torque<br>@100°C | Power | Engaging<br>time<br>(braking) | Disengaging<br>time<br>(Unbraking) | Extra<br>Inertia          | Angular<br>backlash |
|-------|---------------------------|----------------------------|-------|-------------------------------|------------------------------------|---------------------------|---------------------|
|       | (N.m)                     | (N.m)                      | (W)   | (ms)                          | (ms)                               | (Kg.m².10 <sup>-5</sup> ) | (°)                 |
| NX3   | 2                         | 1.8                        | 11    | 13                            | 25                                 | 0.68                      | 0                   |
| NX4   | 5.5                       | 4                          | 12    | 17                            | 35                                 | 1.8                       | 0                   |
| NX6   | 12                        | 8                          | 18    | 28                            | 40                                 | 5.4                       | 0                   |
| NX8   | 36                        | 32                         | 26    | 45                            | 100                                | 55.6                      | 0                   |

Table with typical values



# 4. COMMISSIONING, USE AND MAINTENANCE

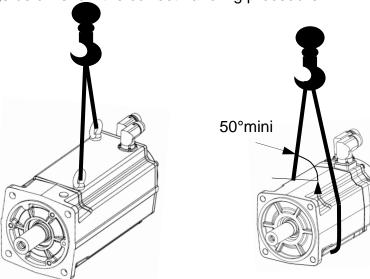
## 4.1. Instructions for commissioning, use and maintenance

#### 4.1.1. Equipment delivery

All servomotors are strictly controlled during manufacturing, before shipping. While receiving it, it is necessary to verify motor condition and if it has not been damaged in transit. Remove it carefully from its packaging. Verify that the data written on the label are the same as the ones on the acknowledgement of order, and that all documents or needed accessories for user are present in the packaging.



<u>Warning</u>: In case of damaged material during the transport, the recipient must <u>immediately</u> make reservations to the carrier through a registered mail within 24 h..


#### 4.1.2. Handling

Servomotors are equipped with two lifting rings intended for handling.



<u>Caution:</u> Use only servomotors lifting rings, if present, or slings to handle the motor. Do not handle the motor with the help of electrical cables, connectors and water inputs/outputs, or use any other inappropriate method.

The drawings below show the correct handling procedure.





<u>DANGER:</u> Choose the correct slings for the motor weight. The two slings must the same length and a minimum angle of 50° has to be respected between the motor axis and the slings.



#### 4.1.3. **Storage**

Before being mounted, the motor has to be stored in a dry place, without rapid or important temperature variations in order to avoid condensation.

During storage, the ambient temperature must be kept between -20 and +60°C.

If the torque motor has to be stored for a long time, verify that the shaft end, feet and the flange are coated with corrosion proof product.

After a long storage duration (more than 3 month), run the motor at low speed in both directions, in order to blend the bearing grease spreading.

The motor is delivered with caps for the water inlet and outlet to protect the cooling circuit. Keep them on place until the motor commissioning.

#### 4.2. Installation

#### 4.2.1. Mounting

Foundation must be even, sufficiently rigid and shall be dimensioned in order to avoid vibrations due to resonance. Before bolting the motor, the foundation surface must be cleaned and checked in order to detect any excessive height difference between the motor locations. The surface variation shall not exceed 0,1 mm.



<u>Caution:</u> The user bears the entire responsibility for the preparation of the foundation.

The table below gives the average tightening torques required regarding the fixing screw diameter. These values are valid for both motor's feet and flange bolting.

| Screw diameter | Tightening torque |
|----------------|-------------------|
| M2 x 0.35      | 0.35 N.m          |
| M2.5 x 0.4     | 0.6 N.m           |
| M3 x 0.5       | 1.1 N.m           |
| M3.5 x 0.6     | 1.7 N.m           |
| M4 x 0.7       | 2.5 N.m           |
| M5 x 0.8       | 5 N.m             |
| M6 x1          | 8.5 N.m           |
| M7 x 1         | 14 N.m            |
| M8 x 1.25      | 20 N.m            |

| Screw diameter | Tightening torque |
|----------------|-------------------|
| M9 x 1.25      | 31 N.m            |
| M10 x 1.5      | 40 N.m            |
| M11 x 1.5      | 56 N.m            |
| M12 x 1.75     | 70 N.m            |
| M14 x 2        | 111 N.m           |
| M16 x 2        | 167 N.m           |
| M18 x 2.5      | 228 N.m           |
| M20 x 2.5      | 329 N.m           |
| M22 x 2.5      | 437 N.m           |
| M24 x 3        | 564 N.m           |



Warning: After 15 days, check all tightening torques on all screw and nuts.

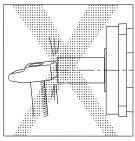


#### 4.2.2. Preparation

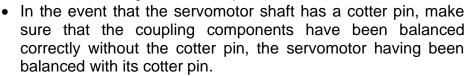
Once the motor is installed, it must be possible to access the wiring, and read the manufacturer's plate. Air must be able to circulate around the motor for cooling purposes.

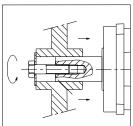
Clean the shaft using a cloth soaked in white spirit or alcohol. Pay attention that the cleaning solution does not get on to the bearings.

The motor must be in a horizontal position during cleaning or running.

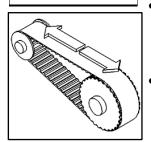



Caution: Do not step on the motor, the connector or the terminal box





<u>Caution:</u> Always bear in mind that some parts of the surface of the motor can reach temperatures exceeding 100°C

#### 4.2.3. Mechanical installation




The operation life of servomotor bearings depends largely on the care and attention given to this operation.





- Prohibit any impact on the shaft and avoid press fittings which could mark the bearing tracks. If press fitting cannot be avoided, it is advisable to immobilize the shaft in motion; this solution is nevertheless dangerous as it puts the resolver at risk.
- Use the thread at the end of the shaft in accordance with the diagram for fitting pulleys or accessories. It is possible to put pressure on the shoulder of the shaft located in front of the bearing.



- In the event that the front bearing block is sealed by a lip seal which rubs on the rotating section (version IP 65), we recommended that you lubricate the seal with grease thus prolonging its operational life.
- In the event that the drive system uses a pulley and belt, the drive pulley must be fixed as close as possible to the flange. The pulley diameter is to be selected so that the radial load does not exceed the limits given in the catalog.





Warning: a misalignment of the coupling device makes stress and load on the motor shaft depending the rigidity of the installation. The variations of the temperature makes stress and load due to the dilatation. These loads (axials and radiale) do not exceed the load written (§ 3.5).



<u>Warning</u>: The misalignment of the coupling device makes vibration who can realize a destruction of the motor shaft.



We cannot be held responsible for wear on the drive shaft resulting from excessive strain.

#### 4.3. Electrical connections



<u>Danger:</u> Check that the power to the electrical cabinet is off prior to making any connections.



<u>Caution:</u> The wiring must comply with the drive commissioning manual and with recommended cables.



<u>Danger:</u> The motor must be earthed by connecting to an unpainted section of the motor.



<u>Caution:</u> After 15 days, check all tightening torques on cable connection.



#### 4.3.1. Cable connection

Please, read **§3.7** "Electrical connection" to have information about cable connection

Many useful information are already available in the drive documentations.

#### 4.3.2. Encoder cable handling



<u>Danger:</u> before any intervention the drive must be stopped in accordance with the procedure.



<u>Caution:</u> It is forbidden to disconnect the Encoder cable under voltage (high risk of damage and sensor destruction).



<u>Warning:</u> Always wear an antistatic wrist strap during encoder handling.



<u>Warning:</u> Do not touch encoder contacts (risk of damage due to electrostatic discharges ESD.



# 4.4. Maintenance Operations

#### 4.4.1. Summary maintenance operations

# Generality

<u>DANGER:</u> The installation, commission and maintenance operations must be performed by qualified personnel, in conjunction with this documentation.



The qualified personnel must know the safety (C18510 authorization, standard VDE 0105 or IEC 0364) and local regulations.

They must be authorized to install, commission and operate in accordance with established practices and standards.

Please contact PARKER for technical assistance.



<u>Danger:</u> before any intervention the motor must be disconnected from te power supply.

Due to the permanent magnets, a voltage is generated at the terminals when the motor shaft is turned

| Operation                                                                                  | Periodicity   |
|--------------------------------------------------------------------------------------------|---------------|
| Clean the motor                                                                            | Every year    |
| Motor inspection (vibration changes, temperature changes, tightening torques on all scews) | Every year    |
| Bearing replacement                                                                        | Every 20 000h |
| No water condensation checking for water cooling version                                   | Every year    |
| Cooling water quality inspection for water cooling version                                 | Every year    |



# 4.5. Troubleshooting

Some symptoms and their possible causes are listed below. This list is not comprehensive. Whenever an operating incident occurs, consult the relevant servo drive installation instructions (the troubleshooting display indications will help you in your investigation) or contact us at: http://www.parker.com/eme/repairservice.

| Vou note that the mater                       | Charle there is no machanical blackers or if the master                                                                                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| You note that the motor does not turn by hand | Check there is no mechanical blockage or if the motor     terminals are not short sireuited.                                           |
| when the motor is not                         | terminals are not short-circuited.                                                                                                     |
|                                               | Check the power supply to the brake.                                                                                                   |
| connected to the drive.                       |                                                                                                                                        |
| You have difficulty starting the motor or     | <ul> <li>Check on the fuses, the voltage at the terminals (there<br/>could be an overload or the bearings could be jammed),</li> </ul> |
| making it run                                 | also checks on the load current.                                                                                                       |
| 3                                             | <ul> <li>Check the power supply to the brake (+ 24 V ± 10 %) and</li> </ul>                                                            |
|                                               | its polarity.                                                                                                                          |
|                                               | Check on any thermal protection, its connection and how                                                                                |
|                                               | it is set in the drive.                                                                                                                |
|                                               | Check on the servomotor insulation (if in doubt, carry out)                                                                            |
|                                               | hot and cold measurements).                                                                                                            |
|                                               |                                                                                                                                        |
|                                               | The minimum insulation resistance value measured under a                                                                               |
|                                               | max. 50V DC is 50 MΩ:                                                                                                                  |
|                                               | Between the phase and the casing                                                                                                       |
|                                               | <ul> <li>Between the thermal protection and the casing</li> </ul>                                                                      |
|                                               | <ul> <li>Between the brake coil and the casing</li> </ul>                                                                              |
|                                               | <ul> <li>Between the resolver coils and the casing.</li> </ul>                                                                         |
| You find that the motor                       | Reset the offset of the servoamplifier after having given a                                                                            |
| speed is drifting                             | zero instruction to the speed setpoint input.                                                                                          |
| You notice that the                           | Check the speed setpoint of the servo drive.                                                                                           |
| motor is racing                               | Check you are well and truly in speed regulation (and not)                                                                             |
|                                               | in torque regulation).                                                                                                                 |
|                                               | Check the encoder setting                                                                                                              |
|                                               | Check on the servomotor phase order: U, V, W                                                                                           |
| You notice vibrations                         | <ul> <li>Check the encoder and tachometer connections, the</li> </ul>                                                                  |
| . 53                                          | earth connections (carefully) and the earthing of the earth                                                                            |
|                                               | wire, the setting of the servo drive speed loop, tachometer                                                                            |
|                                               | screening and filtering.                                                                                                               |
|                                               |                                                                                                                                        |
|                                               |                                                                                                                                        |
|                                               | Check the rigidity of the frame and motor support                                                                                      |



| You think the motor is becoming unusually hot | <ul> <li>It may be overloaded or the rotation speed is too low: check the current and the operating cycle of the motor.</li> <li>Check if the mounting surface is enough or if this surface is not a heat source – see §3.6 cooling.</li> <li>Friction in the machine may be too high: <ul> <li>Test the motor current with and without a load.</li> <li>Check the motor does not have thermal insulation.</li> <li>Check that there is no friction from the brake when the brake power is on.</li> </ul> </li> <li>Check the cooling circuit</li> </ul> |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You find that the motor is too noisy          | <ul> <li>Several possible explanations:</li> <li>Unsatisfactory mechanical balancing</li> <li>There is friction from the brake: mechanical jamming.</li> <li>Defective coupling</li> <li>Loosening of several pieces</li> <li>Poor adjustment of servo drive or position loop: check rotation in open loop</li> </ul>                                                                                                                                                                                                                                    |
| The motor is warmer on its top                | Air bubbles can be stocked in the water cooling circuit. You need to purge the circuit or to double the water flow rate during 10 minutes to remove the air bubbles.                                                                                                                                                                                                                                                                                                                                                                                     |