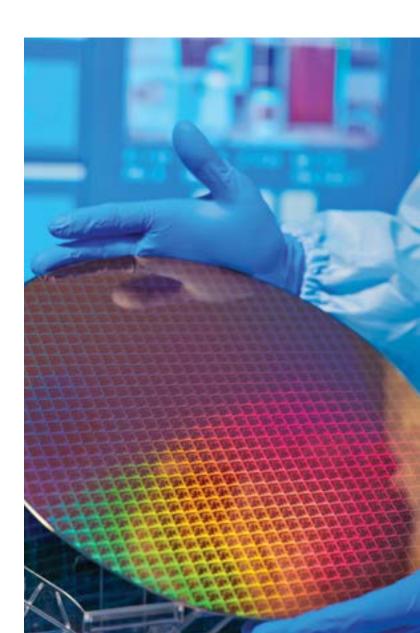
POLY-MATE™ X FILTER CARTRIDGE

Economical, backwashable filtration for critical process applications

Parker Poly-Mate X Cartridges incorporate a unique combination of polypropylene melt blown and spunbonded media to provide high surface area, finish-free and non-fiber releasing filtration. All-polypropylene construction with a robust extruded cage design maximizes chemical resistance to acids, bases, salts, and most organic solvents. Poly-Mate X Pleated Cartridges are available in 0.5µm, 1µm, 5µm, 10µm, 30µm, and 60µm pore sizes.

Benefits


- High efficiency rated for critical process applications (99% at stated micron rating)
- High pleated surface area for extended service life, low pressure drop and high flow capacity
- Available with glass-filled polypropylene or stainless-steel cores for high temperature and high pressure applications
- Rigid outer cage design supports media for backwashable applications to extend filter life and reduce maintenance costs
- Optional stainless-steel O-ring adapter inserts provide added strength for in situ steam sterilization
- All materials of construction are FDA listed as acceptable for potable and edible liquid contact according to CFR Title 21
- · Certified to NSF/ANSI/CAN 61
- Conforms to NSF/ANSI 53
- · Continuous length up to 40 inches
- All thermally welded construction assures product quality and process compatibility

Applications

- Plating
- · Photographic Chemicals
- Fine Chemicals
- · High-Technology Coatings
- · Process Water
- · Deionized Water
- · R.O. Membrane Pre-filtration
- Beverages

POLY-MATE X™ FILTER CARTRIDGE

Specifications

Materials of Construction

Filter media and support layers: Polypropylene

Surface treatment: None (fusion-sealed), chemically neutral

Outer cage: Extruded Polypropylene

Inner core options:

- Extruded Polypropylene
- Glass-filled Polypropylene
- · 304 Stainless Steel

Pleat pack side seal: Thermally-welded polypropylene

End caps: Polypropylene

Seals: Buna-N, EPR, Silicone, Viton, PFA encapsulated Viton,

Polyethylene foam gaskets

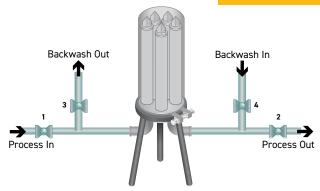
Recommended Operating Conditions

Change-out ΔP: 35 psid (2.4 bar)
Maximum Temperature: 200°F (93°C)

Maximum Flow Rate: 10 gpm per, 10 in. length

Performance Attributes

Dimensions


- · Cartridge Outside Diameter: 2 ½ in. (63.5 mm)
- Cartridge Inside Diameter: 1 in. (25.4 mm)

Filtration Rating: 99% at stated micron rating

Effective Filtration Area: Up to 6.0 ft²/10 in (0.6m²/254mm

Flow Rate and Pressure Drop Formulas

Flow Rate (gpm) = $\underline{\text{Clean } \Delta P \times \text{Length Factor}}$ Viscosity x Flow Factor Clean ΔP = $\underline{\text{Flow Rate x Viscosity x Flow Factor}}$ Length Factor

Backwash Schematic

- Initiate a backwash cycle when the pressure drop rises about 3-4 psid (0.2 to 0.3 bar) above the initial value or alternately on a timed cycle, e.g., daily or after batches.
- Backwash flow rate should be 1.5 to 2 times the process flow rate without exceeding a maximum ΔP of 10 psid (0.7 bar).
- · Backwash steps:
 - 1. Close valves 1 and 2 to isolate the filter. Then open valves 3 and 4 to begin backwash flow.
 - 2. Monitor the decrease in pressure drop and continue backwash until the it no longer decreases.
 - Close valves 3 and 4 and open valves 1 and 2 to resume normal filtration.

Allow enough time to flush the contaminant out from the vessel. Flow pulsations helps to release entrapped particles. Maximum Temperature 70°F (21°C).

	Inner Core	Maximum Δ Pressure			
		@ 70°F (21°C)	@ 125°F (50°C)	@ 200°F (93°C)	
	Polypropylene (A)	60 psid (4.1 bar)	35 psid (2.4 bar)	10 psid (0.7 bar)	

Ordering Information

Pore Size			Nominal Length	
CODE	MICRON		CODE	INCHES MM
005¹	0.5		10	9 % (244)
010	1.0		20	19 ¾ (502)
050	5.0		30	29 7/8 (758)
100	10.0		40	39 ¾ (1010)
300	30.0			
600	60.0			

Core material		
CODE	MATERIAL	
Α	Natural Polypropylene	
F	Glass-filled polypropylene	
G	304 stainless steel	

¹Reduces Giardia and Cryptosporidium to NSF/ANSI 53 standard as verified by third party laboratory. Documentation provided upon request.

Parker Hannifin Corporation

Bioscience & Water Filtration Division

2340 Eastman Avenue Oxnard, California, USA 93030

+1 805 604 3400

bwf.oxn.support@support.parker.com

www.parker.com/bioscience

www.parker.com/microelectronics-filtration

Seal Material		
CODE	MATERIAL	
Р	Polyfoam (DOE gasket only)	
Е	EPR	
N	Buna-N	
S	Silicone	
T²	PFA Encapsulated Viton® for 222/226 O-rings or Expanded PTFE for DOE	
V^2	Viton®	
Х	No seal material	
² T and V seal material codes do not conform to NSF/ANSI/CAN 61.		

End Cap Configuration				
CODE	DESCRIPTION			
DO	Double open end (DOE)			
DX	Double open end/ extended core			
TC	222 O-ring/Flat			
TF	222 O-ring/Fin			
TX	222 O-ring/Flex Fin			
SC	226 O-ring/Flat			
SF	226 O-ring/Fin			
STC	S.S. Inserted 222 O-ring/Flat			
STF	S.S. Inserted 222 O-ring/Fin			
SSC	S.S. Inserted 226 O-ring/Flat			
SSF	S.S. Inserted 226 O-ring/Fin			

