Hydraulic Motors
M5* Series
Denison Vane Technology, fixed displacement
AVAILABILITY
Worldwide distribution
sales force and service

FLEXIBILITY
Solutions for global
and regional challenges

SUSTAINABILITY
Protecting people
and environment

PROFITABILITY
Serving for greater value to you
and your business

RELIABILITY
Maximizing uptime
and optimizing performance

ENGINEERING YOUR SUCCESS.
With annual sales of $11 billion in fiscal year 2016, Parker Hannifin is the world’s leading diversified manufacturer of motion and control technologies and systems. Strong competitive advantages, a clear strategy and goals, consistent execution and performance, and many opportunities for growth, have allowed the company to consistently deliver strong shareholder returns. Parker has increased its annual dividends paid to shareholders for 60 consecutive fiscal years, among the top five longest-running dividend-increase records in the S&P 500 index.

For more information, visit the company’s website at www.parker.com or its investor information website at www.phstock.com.
Catalogue HY29-0128/UK

General Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and product key features</td>
<td>3</td>
</tr>
<tr>
<td>Description of the M5 motors</td>
<td>4 to 5</td>
</tr>
</tbody>
</table>

Main Technical Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum speed and pressure</td>
<td>6</td>
</tr>
<tr>
<td>Displacement and specific torque</td>
<td>6</td>
</tr>
<tr>
<td>Installation and connection</td>
<td>7</td>
</tr>
</tbody>
</table>

Ordering Code

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A motor</td>
<td>8</td>
</tr>
<tr>
<td>M5AS motor</td>
<td>9</td>
</tr>
<tr>
<td>M5ASF motor</td>
<td>10</td>
</tr>
<tr>
<td>M5AF motor</td>
<td>11</td>
</tr>
<tr>
<td>M5B and M5BS motor</td>
<td>12</td>
</tr>
<tr>
<td>M5BF motor</td>
<td>13</td>
</tr>
</tbody>
</table>

Technical Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. ratings M5A - M5AS - M5ASF motors</td>
<td>14</td>
</tr>
<tr>
<td>Max. ratings M5AF motor</td>
<td>15</td>
</tr>
<tr>
<td>Max. ratings M5B - M5BS - M5BF motors</td>
<td>16</td>
</tr>
<tr>
<td>Flow and torque data M5A - M5AS - M5ASF - M5AF motors</td>
<td>17</td>
</tr>
<tr>
<td>Flow and torque data M5B - M5BS - M5BF motors</td>
<td>18</td>
</tr>
<tr>
<td>Starting performances</td>
<td>19</td>
</tr>
<tr>
<td>Permissible shaft loads</td>
<td>19</td>
</tr>
<tr>
<td>Noise level charts</td>
<td>20</td>
</tr>
</tbody>
</table>

Circuit Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical symbols</td>
<td>21</td>
</tr>
<tr>
<td>Motor selection example</td>
<td>22</td>
</tr>
<tr>
<td>Hydraulic fluids, types of seals, motor installation</td>
<td>23</td>
</tr>
<tr>
<td>Minimum replenishment pressure during deceleration</td>
<td>24</td>
</tr>
<tr>
<td>Reverse cycle for fan drives</td>
<td>24</td>
</tr>
<tr>
<td>Connection of several motors in the same circuit</td>
<td>24</td>
</tr>
<tr>
<td>Electrohydraulic valves</td>
<td>25 to 26</td>
</tr>
<tr>
<td>Start-up instructions</td>
<td>26</td>
</tr>
</tbody>
</table>

Dimension Drawings

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A and M5AS motor with rear ports</td>
<td>27</td>
</tr>
<tr>
<td>M5A and M5AS motors with opposite ports</td>
<td>28</td>
</tr>
<tr>
<td>M5A and M5AS motors with side ports</td>
<td>29</td>
</tr>
<tr>
<td>M5A and M5AS motors with reverse valve option</td>
<td>30</td>
</tr>
<tr>
<td>M5ASF motor with opposite ports</td>
<td>31</td>
</tr>
<tr>
<td>M5ASF motor with side ports</td>
<td>32</td>
</tr>
<tr>
<td>M5ASF motor with reverse valve option</td>
<td>33</td>
</tr>
<tr>
<td>M5AF motor</td>
<td>34</td>
</tr>
<tr>
<td>M5B and M5BS motors</td>
<td>35</td>
</tr>
<tr>
<td>M5B and M5BS motors with reverse valve option</td>
<td>36</td>
</tr>
<tr>
<td>M5BF motor</td>
<td>37</td>
</tr>
<tr>
<td>M5BF motor with reverse valve option</td>
<td>38</td>
</tr>
<tr>
<td>Warning</td>
<td>39</td>
</tr>
</tbody>
</table>
Introduction

We are very pleased to present you with the M5 hydraulic motors of Parker Hannifin, a range of high quality products designed for the heavy duty applications, gathering the latest developments of our reference “Denison Vane Technology”.

Not only are these M5 motors performing very well in many various applications such as mixers, shredders, compressor and generator drives, but they do it in silence and for a long service life. Dedicated construction types have been created for fan drives. They offer a very compact solution and, with their built-in valves, they turn into complete hydraulic cooling units, allowing optimal performances, time and money savings for our OEM customers and end users.

This catalogue describes the 3 existing sizes of M5 hydraulic vane motors in their various standard construction types. Equipment manufacturers who may request additional options or have specific requests, are welcome to contact us for a tailored solution study.

Key features

High performances
The M5 motors have been designed especially for severe duty applications which require long lasting high pressure, high speed capabilities even with low fluid lubricity. Their performances remain stable over time.

Long lifetime
The fully pressure balanced concept increases the motor lifetime over its full speed range. Double lip vanes reduce the sensitivity to fluid pollution. The bearing capabilities are totally dedicated to the external loads on the shaft ends, whatever the operating pressures are.

Low noise
Simply silent! The Denison Vane Technology allows a very low noise level, whatever the speed.

Low torque ripple
Thanks to their 12 vanes, advanced cam ring profile, two torque cycles per revolution and low internal dead volumes, the M5 motors exhibit a very low torque ripple (typical ± 1.5%), even at low speeds.

Versatility and compactness
Up to 7 different displacements for the same motor installation size.
M5 fan drive motors can be mounted directly on the radiator support with a very short overall length. The fan blade can be directly installed on the motor tapered shaft end.

Built-in valves
A selection of well proven Parker electro-hydraulic valves are adding even more functionalities. Being directly integrated into the motor they offer the best technical performances and the lowest cost of installation.
Operation

• The motor shaft is driven by the rotor. The vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.

• Light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop starting torque. The springs are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through openings in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.

• The rotor is axially separated from the sideplate surface by the fluid film. The front pressure port plate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the port plate causes clamping pressure in Port A or B, whichever is the highest.

• Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. The cast iron port plate and the end cap are chemically etched to offer a fine crystalline surface allowing a better lubrication at start-up.
Description

- The motor shaft is driven by the rotor. The vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.

- Hydraulic pins and light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop starting torque. The springs and pins are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through openings in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.

- The rotor is axially separated from the sideplate surface by the fluid film. The front pressure port plate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the port plate causes clamping pressure in Port A or B, whichever is the highest.

- Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. The cast iron port plate and the end cap are chemically etched to offer a fine crystalline surface allowing a better lubrication at start-up.

Operación

- El eje del motor está impulsado por el rotor. Las válvulas, ajustadas en forma estrecha en los ranuras del rotor, se mueven radialmente para sellar contra el disco cam. El disco tiene dos secciones radiales mayores y dos menores, interconectadas por secciones de transición llamadas rampas. Estos contornos y las presiones a las que se exponen están equilibradas diametralmente.

- Los pinos hidráulicos y las pequeñas muelles empujan a las válvulas radialmente contra el contorno del disco cam asegurando un sellado a cero velocidad de modo que el motor puede desarrollar torque de arranque. Los resortes y los pinos están ayudados por la fuerza centrífuga a altas velocidades. Los surcos radiales y los orificios radiales a través de las válvulas igualan las fuerzas hidrostáticas radiales en las válvulas en todo momento. El fluido entra y sale del carrete del motor a través de los orificios de los lados a los rampas. Cada puerto del motor está conectado a dos rampas diametralmente opuestas. El fluido presurizado entrando en el puerto A torca el rotor de derecha a izquierda. El rotor transfiere el fluido a los orificios de las rampas que están conectados al puerto B desde donde regresa al lado de presión baja del sistema. La presión en el puerto B torca el rotor en el sentido opuesto.

- El rotor está axialmente separado de la superficie del plato a través del film de fluido. La placa de presión frontal es clavada contra el disco cam por la presión, mantiene una clearance óptima como las dimensiones cambian con la temperatura y la presión. Un válvula de tres vías en la placa de puerto causa la presión de clavado en el puerto A o B, el cual es el más alto.

- Los materiales son elegidos por su durabilidad. Las válvulas, el rotor y el disco cam están hechos de acero de alta aleación endurecidas. El plato de puerto de hierro fundido y el tapón de final están químicamente grabados para ofrecer una superficie cristalina fina que permite una lubricación mejorada al arranque.
Main Technical Data

Hydraulic Motors, Fixed

M5, Denison Vane Motors

Max. speed and pressure

<table>
<thead>
<tr>
<th>Model of motor</th>
<th>Series</th>
<th>Maximum speed</th>
<th>Maximum pressure with HF-0, HF-2 fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Int. rpm</td>
<td>Cont. rpm</td>
</tr>
<tr>
<td>M5A</td>
<td>006</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>012</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>4000</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>3000</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5AS</td>
<td>006</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>012</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>4000</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>3000</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5ASF</td>
<td>006</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>012</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>4000</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>3000</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5B</td>
<td>012</td>
<td>6000</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>4000</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5BS</td>
<td>012</td>
<td>6000</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>4000</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5BF</td>
<td>006</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>012</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td>016</td>
<td>4000</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>3000</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Bi-rotational motor only. Others = 2500 rpm
2) For fan drive application only. Others = 280 bar max

Displacement and specific torque

<table>
<thead>
<tr>
<th>Series</th>
<th>Theoretical Displacement V_i</th>
<th>Theoretical torque</th>
<th>Theoretical power at 100 rpm</th>
<th>Typical data at 2000 rpm - 280 bar</th>
<th>Typical data (M5AF only) at 2000 rpm - 300 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm^3/rev</td>
<td>N.m/bar</td>
<td>kW/bar</td>
<td>N.m</td>
<td>kW</td>
</tr>
<tr>
<td>M5A</td>
<td>6,3</td>
<td>0,100</td>
<td>0,0011</td>
<td>24,4</td>
<td>5,1</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>0,159</td>
<td>0,0017</td>
<td>40,8</td>
<td>8,6</td>
</tr>
<tr>
<td></td>
<td>12,5</td>
<td>0,199</td>
<td>0,0021</td>
<td>52,0</td>
<td>10,9</td>
</tr>
<tr>
<td>M5AS</td>
<td>16,0</td>
<td>0,255</td>
<td>0,0027</td>
<td>67,6</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td>18,0</td>
<td>0,286</td>
<td>0,0030</td>
<td>75,8</td>
<td>15,9</td>
</tr>
<tr>
<td>M5ASF</td>
<td>23,0</td>
<td>0,366</td>
<td>0,0038</td>
<td>98,4</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>25,0</td>
<td>0,398</td>
<td>0,0042</td>
<td>107,4</td>
<td>22,5</td>
</tr>
<tr>
<td>M5AF</td>
<td>023 - 025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) 023 - 025 = 280 bar max.

<table>
<thead>
<tr>
<th>Series</th>
<th>Theoretical Displacement V_i</th>
<th>Theoretical torque</th>
<th>Theoretical power at 100 rpm</th>
<th>Typical data at 2000 rpm - 320 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm^3/rev</td>
<td>N.m/bar</td>
<td>kW/bar</td>
<td>N.m</td>
</tr>
<tr>
<td>M5B</td>
<td>12,0</td>
<td>0,191</td>
<td>0,0020</td>
<td>50,6</td>
</tr>
<tr>
<td></td>
<td>18,0</td>
<td>0,286</td>
<td>0,0030</td>
<td>81,2</td>
</tr>
<tr>
<td>M5BS</td>
<td>23,0</td>
<td>0,366</td>
<td>0,0038</td>
<td>117,1</td>
</tr>
<tr>
<td></td>
<td>28,0</td>
<td>0,446</td>
<td>0,0047</td>
<td>132,1</td>
</tr>
<tr>
<td>M5BF</td>
<td>36,0</td>
<td>0,572</td>
<td>0,0060</td>
<td>172,8</td>
</tr>
<tr>
<td></td>
<td>45,0</td>
<td>0,716</td>
<td>0,0075</td>
<td>N/A[1]</td>
</tr>
</tbody>
</table>

1) 045 = 280 bar max.
Main Technical Data

Hydraulic Motors, Fixed

M5, Denison Vane Motors

Installation and connection

<table>
<thead>
<tr>
<th>Mounting flange</th>
<th>Shaft end</th>
<th>Port A</th>
<th>Port B</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A Uni-rotational</td>
<td>ISO 3019-2</td>
<td>Keyed taper 1/5</td>
<td>Threaded port : - M22 x 1,5 - ISO-6149-1</td>
<td>Threaded port : - M27 x 2 - ISO-6149-1</td>
</tr>
<tr>
<td>M5A with reverse function</td>
<td>80 A2 SW 2-bolts pilot Ø 80</td>
<td>Keyed ISO G20N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5A Bi-rotational</td>
<td>Keyed taper 1/5</td>
<td>Threaded port : - M22 x 1,5 - ISO-6149-1</td>
<td>Threaded port : - M27 x 2 - ISO-6149-1</td>
<td>Threaded port : - M12 x 1,5 - ISO-6149-1</td>
</tr>
<tr>
<td>M5AS Uni-rotational</td>
<td>SAE A J744 2-bolts pilot Ø 82.55</td>
<td>Keyed taper 1/5</td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
</tr>
<tr>
<td>M5AS with reverse function</td>
<td>Keyed SAE B</td>
<td>Keyed taper 1/5</td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
</tr>
<tr>
<td>M5AS Bi-rotational</td>
<td>Keyed ISO G20N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5ASF Uni-rotational</td>
<td>Special 2-bolts pilot Ø 100</td>
<td>Keyed taper SAE B</td>
<td>Threaded port : - M22 x 1.5 - ISO 6149-1</td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
</tr>
<tr>
<td>M5ASF with reverse function</td>
<td>or pilot Ø 101.6</td>
<td>Keyed SAE B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5ASF Bi-rotational</td>
<td>Keyed taper 1/5</td>
<td>Keyed taper SAE B</td>
<td>Threaded port : - M22 x 1.5 - ISO-6149-1</td>
<td>Threaded port : - M27 x 2 - ISO-6149-1</td>
</tr>
<tr>
<td>M5AF</td>
<td>Keyed ISO G20N</td>
<td></td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
<td>Threaded port : - SAE 12 - (1.1/16"-12 UNF)</td>
</tr>
<tr>
<td>M5B</td>
<td>Special 2-bolts pilot Ø 120</td>
<td>Keyed taper non SAE</td>
<td>- SAE flange 3/4" - 4 bolts with metric thread</td>
<td>Threaded port : - SAE flange 3/4" - 4 bolts with metric thread</td>
</tr>
<tr>
<td>M5B with reverse function</td>
<td>Keyed non SAE</td>
<td></td>
<td></td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
</tr>
<tr>
<td>M5B Bi-rotational</td>
<td>Keyed cyl. SAE B</td>
<td>Keyed cyl. ISO E25M</td>
<td></td>
<td>Threaded port : - SAE flange 3/4" - 4 bolts with metric thread</td>
</tr>
<tr>
<td>M5BS</td>
<td>Keyed cyl. ISO G32N</td>
<td></td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
<td>Threaded port : - M33 x 2 - ISO 6149-1</td>
</tr>
<tr>
<td>M5BS with reverse function</td>
<td>SAE B J744 2/4 bolts pilot Ø 101.6</td>
<td>SAE B</td>
<td>- SAE flange 3/4" - 4 bolts with metric thread</td>
<td>Threaded port : - SAE flange 3/4" - 4 bolts with metric thread</td>
</tr>
<tr>
<td>M5BSF</td>
<td>Spined SAE B</td>
<td>Spined SAE BB</td>
<td></td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
</tr>
<tr>
<td>M5BF</td>
<td>Keyed taper non SAE</td>
<td>Keyed cyl. SAE C</td>
<td></td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
</tr>
<tr>
<td>M5BF with reverse function</td>
<td>Keyed cyl. ISO G32N</td>
<td></td>
<td></td>
<td>Threaded port : - M27 x 2 - ISO 6149-1</td>
</tr>
</tbody>
</table>

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France

7
M5A model description

Model No.
- M5A

M5A series - ISO 3019-2
- Mounting flange 80 A2 SW

Cam ring
- Volumetric displacement (ml/rev)
 - 006 = 6.3
 - 010 = 10.0
 - 012 = 12.5
 - 016 = 16.0

Type of shaft M5A
- 5 = Taper 1/5
- 6 = Keyed (ISO G20N)

Direction of rotation (shaft end view)
- R = Clockwise (with anti-cavitation check valve)
- L = Counter-clockwise (with anti-cavitation check valve)
- N = Bi-rotational (without any anti-cavitation check valve)

End cap type (See table)
- Motor with opposite ports: 01, 02, 03, 04 (not combinable with a motor having the reverse valve option)
- Motor with side ports: 11, 12, 13, 14
- Motor with rear ports: 21, 22, 23, 24 (only combinable with a bi-rotational motor)

Ordering Code

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port M22 x 1.5</td>
<td>Metric threaded port M12 x 1.5</td>
</tr>
</tbody>
</table>

Pressure valve type
- 00 = For motor without pressure valve
- 21 = Valve set at 210 bar
- 28 = Valve set at 280 bar
- ** = Customised value (please consult Parker)

Option
- 0 = No option
- R = Reverse valve

Connection variables

<table>
<thead>
<tr>
<th>Code</th>
<th>A port</th>
<th>B port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port M22 x 1.5</td>
<td>Metric threaded port M27 x 2</td>
<td>Metric threaded port M12 x 1.5</td>
</tr>
</tbody>
</table>

Seal class
- 1 = S1 BUNA N
- 5 = S5 - VITON®

Position of the ports (Rotation way see page 21)

Motor with opposite ports
- Shaft end view

<table>
<thead>
<tr>
<th>Code</th>
<th>Drain</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>03</td>
<td>DRAIN</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>04</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Motor with side ports
- Shaft end view

<table>
<thead>
<tr>
<th>Code</th>
<th>Drain</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>DRAIN</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Motor with rear ports
- Rear end view

<table>
<thead>
<tr>
<th>Code</th>
<th>Drain</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td>DRAIN</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>DRAIN</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>
M5AS model description

Model No. M5AS - 018 - 1 R 12 - A 1 W - 0 0 M 28

Max pressure setting value
- 00 = For motor without pressure valve
- 21 = Valve set at 210 bar
- 28 = Valve set at 280 bar
Customised value (please consult Parker)

Pressure valve type
- 0 = Without pressure valve
- P = Proportional valve
- M = Mechanical valve

Option
- 0 = No option
- R = Reverse valve

Connection variables

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>Z</td>
<td>3/4" BSPP threaded port</td>
<td>1/4" BSPP threaded port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>A port</th>
<th>B port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>UNF threaded port SAE 10</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>Z</td>
<td>1/2" BSPP threaded port</td>
<td>3/4" BSPP threaded port</td>
<td>1/4" BSPP threaded port</td>
</tr>
</tbody>
</table>

Seal class
- 1 = S1 BUNA N
- 5 = S5 - VITON®

Position of the ports (Rotation way see page 21)

Motor with opposite ports

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAIN</td>
<td>DRAIN</td>
</tr>
</tbody>
</table>

Motor with side ports

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAIN</td>
<td>DRAIN</td>
</tr>
</tbody>
</table>

Motor with rear ports

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAIN</td>
<td>DRAIN</td>
</tr>
</tbody>
</table>
M5ASF model description

Model No.
- M5ASF series
 - 2-bolts mounting flange, pilot Ø 101.6
 - 2-bolts mounting flange, pilot Ø 100 (metric ports version Y)

Cam ring
- Volumetric displacement (ml/rev)
 - 006 = 6.3, 018 = 18.0
 - 010 = 10.0, 023 = 23.0
 - 012 = 12.5, 025 = 25.0
 - 016 = 16.0

Type of shaft
- 1 = Taper (SAE B)
- 2 = Keyed (SAE B)
- 5 = Taper 1/5
- 6 = Keyed (ISO G20N)

Direction of rotation (shaft end view)
- R = Clockwise (with anti-cavitation check valve)
- L = Counter-clockwise (with anti-cavitation check valve)
- N = Bi-rotational (without any anti-cavitation check valve)

End cap type
- (See table)
- Motor with opposite ports: 01, 02, 03, 04 (not combinable with motor having the reverse valve option)
- Motor with side ports: 11, 12, 13, 14

Design letter

Seal class
- 1 = S1 BUNA N
- 5 = S5 - VITON®

Max pressure setting value
- 00 = For motor without pressure valve
- 21 = Valve set at 210 bar
- 28 = Valve set at 280 bar
- **Customised value (please consult Parker)**

Pressure valve type
- 0 = Without pressure valve
- P = Proportional valve
- M = Mechanical valve

Option
- 0 = No option
- R = Reverse valve

Connection variables

M5ASF bi-rotational series

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port</td>
<td>Metric threaded port</td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>Z</td>
<td>3/4" BSPP threaded port</td>
<td>1/4" BSPP threaded port</td>
</tr>
</tbody>
</table>

M5ASF uni-rotational and reverse valve option

<table>
<thead>
<tr>
<th>Code</th>
<th>A port</th>
<th>B port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port M22 x 1.5</td>
<td>Metric threaded port M12 x 1.5</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 10</td>
<td>UNF threaded port SAE 6</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>1/2" BSPP threaded port</td>
<td>3/4" BSPP threaded port</td>
<td>1/4" BSPP threaded port</td>
</tr>
</tbody>
</table>

Position of the ports (Rotation way see page 21)

Motor with opposite ports

- **Shaft end view**
 - **Motor with opposite ports**
 - **Motor with side ports**

Motor with side ports

- **Shaft end view**

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France
M5AF model description

Model No. M5AF - 018 - 1 R 02 - B 1 M - 0 0 P 21

Max pressure setting value
00 = For motor without pressure valve
21 = Valve set at 210 bar
28 = Valve set at 280 bar
** Customised value (please consult Parker)

Pressure valve type
0 = Without pressure valve
P = Proportional valve
M = Mechanical valve

Option
0 = No option
A = Anti-starve valve (only with end cap M & 0)

Connection variables

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>4 bolts SAE flange 3/4" with metric threads</td>
<td>Metric threaded port M12 x 1,5</td>
</tr>
<tr>
<td>0</td>
<td>4 bolts SAE flange 3/4" with UNC threads</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>Y</td>
<td>Metric threaded port M22 x 1,5</td>
<td>Metric threaded port M12 x 1,5</td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
</tbody>
</table>

Position of the ports (Rotation way see page 21)

Motor with side ports
Shaft end view

![Position of the ports diagram]
M5B - M5BS model description

Model No.	M5B	M5BS
ISO 3019-2 | ISO 3019-2
Mounting flange 100 A2/B4 HW | A2/B4 HW

Cam ring
- Volumetric displacement (ml/rev)
 - 012 = 12,5
 - 018 = 18,0
 - 023 = 23,0

- 028 = 28,0
- 036 = 36,0
- 045 = 45,0

Type of shaft
- 1 = Keyed (SAE B)
- 2 = Keyed (ISO E25M)
- 3 = Splined (SAE B)
- 4 = Splined (SAE BB)

Direction of rotation (shaft end view)
- R = Clockwise (with anti-cavitation check valve)
- L = Counter-clockwise (with anti-cavitation check valve)
- N = Bi-rotational (without any anti-cavitation check valve)

End cap type (See table)
Motor with side ports: 01, 02, 03, 04

Design letter

Seal class
- 1 = S1 BUNA N
- 5 = S5 - VITON®

Max pressure setting value
- 00 = For motor without pressure valve
- 21 = Valve set at 210 bar
- 28 = Valve set at 280 bar
- ** Customised value (please consult Parker)

Pressure valve type
- 0 = Without pressure valve
- P = Proportional valve
- M = Mechanical valve

Option
- 0 = No option
- A = Anti-starve valve (only with end cap M & 0)
- R = Reverse valve (only Y and W)

Connection variables

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>4 bolts SAE flange 3/4” with metric threads</td>
<td>M18 x 1.5</td>
</tr>
<tr>
<td>Y</td>
<td>Metric threaded port M27 x 2</td>
<td>M18 x 1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>4 bolts SAE flange 3/4” with UNC threads</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>A port</th>
<th>B port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port M27 x 2</td>
<td>Metric threaded port M33 x 2</td>
<td>M18 x 1.5</td>
</tr>
</tbody>
</table>

Position of the ports (Rotation way see page 21)

Motor with side ports
Shaft end view

Ordering code

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France
M5BF model description

Model No.
- M5BF - 036 - W 04 - B 1 Y - 0 R 28

Cam ring
- Volumetric displacement (ml/rev)
 - 012 = 12.5
 - 018 = 18.0
 - 023 = 23.0
 - 028 = 28.0
 - 036 = 36.0
 - 045 = 45.0

Type of shaft
- 1 = Taper (non SAE)
- 2 = Keyed (SAE C)
- W = Keyed cyl. (ISO G32N)

Direction of rotation (shaft end view)
- R = Clockwise (with anti-cavitation check valve)
- L = Counter-clockwise (with anti-cavitation check valve)
- N = Bi-rotational (without any anti-cavitation check valve)

End cap type (See table)
- Motor with side ports: 01, 02, 03, 04

Design letter
- Seal class
 - 1 = S1 BUNA N
 - 5 = S5 - VITON®

Max pressure setting value
- 00 = For motor without pressure valve
- 21 = Valve set at 210 bar
- 28 = Valve set at 280 bar
- **Customised value (please consult Parker)**

Pressure valve type
- 0 = Without pressure valve
- P = Proportional valve
- M = Mechanical valve

Option
- 0 = No option
- A = Anti-starve valve (only with end cap M & 0)
- R = Reverse valve (only Y and W)

Connection variables

M5BF uni-rotational and bi-rotational series

<table>
<thead>
<tr>
<th>Code</th>
<th>A & B ports</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>4 bolts SAE flange 3/4" with metric threads</td>
<td>Metric threaded port M15 x 1.5</td>
</tr>
<tr>
<td>O</td>
<td>4 bolts SAE flange 3/4" with UNC threads</td>
<td>UNF threaded port SAE 6</td>
</tr>
<tr>
<td>Y</td>
<td>Metric threaded port M27 x 2</td>
<td>Metric threaded port M18 x 1.5</td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 6</td>
</tr>
</tbody>
</table>

M5BF reverse valve option

<table>
<thead>
<tr>
<th>Code</th>
<th>A port</th>
<th>B port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Metric threaded port M27 x 2</td>
<td>Metric threaded port M33 x 2</td>
<td>Metric threaded port M15 x 1.5</td>
</tr>
<tr>
<td>W</td>
<td>UNF threaded port SAE 12</td>
<td>UNF threaded port SAE 16</td>
<td>UNF threaded port SAE 6</td>
</tr>
</tbody>
</table>

Position of the ports (Rotation way see page 21)

Motor with side ports

Shaft end view

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France
Max. ratings M5A - M5AS - M5ASF

- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.
- For higher specifications or for operating speed under < 100 rpm, please consult Parker.
Max. ratings M5AF

- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.
- For higher specifications or for operating speed under < 100 rpm, please consult Parker.
Technical Data

Max. ratings M5B - M5BS - M5BF

- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.
- Intermittent conditions: do not exceed 6 seconds per minute of rotation.
- For higher specifications or for operating speed under < 100 rpm, please consult Parker.
M5A - M5AS - M5ASF - M5AF motors without reverse valve option

Overall Leakage (internal + external)

- **M5A* - 006 and 010**
 @ n = 1500 rpm

- **M5A* - 012 and 016**
 @ n = 1500 rpm

- **M5A* - 018**
 @ n = 1500 rpm

- **M5A* - 023 and 025**
 @ n = 1500 rpm

Torque Loss

- **M5A* - 006 and 010**
 @ n = 1500 rpm

- **M5A* - 012 and 016**
 @ n = 1500 rpm

- **M5A* - 018**
 @ n = 1500 rpm

- **M5A* - 023 and 025**
 @ n = 1500 rpm
M5B - M5BS - M5BF motors without reverse valve option

Overall Leakage (internal + external)

Torque Loss

Pressure p [bar]

Overall leakage Q_{loss} [l/min]

Torque loss T_{loss} [Nm]

M5B* - 012 & 018
@ $n = 1500$ rpm

M5B* - 012 & 018
@ $n = 1500$ rpm

M5B* - 023
@ $n = 1500$ rpm

M5B* - 023
@ $n = 1500$ rpm

M5B* - 028 & 036
@ $n = 1500$ rpm

M5B* - 028 & 036
@ $n = 1500$ rpm

M5B* - 045
@ $n = 1500$ rpm

M5B* - 045
@ $n = 1500$ rpm
Starting performances

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Min starting torque efficiency</th>
<th>100 bar</th>
<th>200 bar</th>
<th>280 bar</th>
<th>300 bar</th>
<th>320 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A - M5AS - M5ASF</td>
<td>83 %</td>
<td>88 %</td>
<td>90 %</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>M5AF</td>
<td>83 %</td>
<td>88 %</td>
<td>90 %</td>
<td>90 %</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>M5B - M5BS - M5BF</td>
<td>79 %</td>
<td>81 %</td>
<td>81 %</td>
<td>81 %</td>
<td>81 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Max. cross-flow at start</th>
<th>100 bar</th>
<th>200 bar</th>
<th>280 bar</th>
<th>300 bar</th>
<th>320 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A - M5AS - M5ASF</td>
<td>0.6 lpm</td>
<td>7.4 lpm</td>
<td>8.9 lpm</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>M5AF</td>
<td>0.6 lpm</td>
<td>7.4 lpm</td>
<td>8.9 lpm</td>
<td>10.7 lpm</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>M5B - M5BS - M5BF</td>
<td>1.8 lpm</td>
<td>7.8 lpm</td>
<td>11.1 lpm</td>
<td>11.9 lpm</td>
<td>12.5 lpm</td>
<td></td>
</tr>
</tbody>
</table>

Permissible shaft loads

M5A - M5AS - M5ASF

M5AF

M5BS

M5BF

Torsional stiffness (Nm/rad)

<table>
<thead>
<tr>
<th>Shaft type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5A - M5AS - M5ASF</td>
<td>3251</td>
<td>4191</td>
<td>-</td>
<td>-</td>
<td>3184</td>
<td>3995</td>
<td>-</td>
</tr>
<tr>
<td>M5AF</td>
<td>3497</td>
<td>4530</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M5B - M5BS</td>
<td>6254</td>
<td>6822</td>
<td>6080</td>
<td>6708</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M5BF</td>
<td>4965</td>
<td>7489</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7400</td>
</tr>
</tbody>
</table>
Technical Data

Lifetime

Theoretical lifetime [10^6 rev] : \(L_{10^6} \)

Example of theoretical lifetime calculation for M5ASF motor:

Axial load \(F_a = 1000 \) N

Radial load \(F_r = 500 \) N

Motor speed \(N = 1500 \) rpm

Theoretical lifetime [Hours] : \(L_{10^6} = \frac{16.666 \text{ N [min}^{-1}] \times L_{10^6}}{1500} \)

\(L_{10^6} = 2000 \) [10^6 rev] (See corresponding curve)

\(L_{10^6} = 22.221 \) hours.

Noise levels

- **M5A - M5AS - M5ASF 025**

- **M5AF 025**

- **M5B - M5BS - M5BF 036**
Graphical symbols

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Symbol</th>
<th>Rotation way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-rotational (N) motor</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Uni-rotational (R or L) motor without reverse valve option</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Uni-rotational (R or L) motor without reverse valve, with anti-starve valve option</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Motor with reverse valve option</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

Motor Types
- **M5 all types**
- **M5AF**
- **M5B**
- **M5BS**
- **M5BF**
- **M5A**
- **M5AS**
- **M5ASF**
- **M5B**
- **M5BS**
- **M5BF**
Motor selection example

Motor performances required
Torque \(T \) [Nm] 55
Speed \(n \) [rpm] 1500

Pump available data
Flow \(Q \) [l/min] 30
\(\Delta \) Pressure \(\Delta p \) [bar] 250

1. Check if available power is greater than required power (0.85 estimated overall efficiency).

\[
0.85 \times \frac{Q \times p}{600} \geq \frac{T \times n}{30 \times 1000}
\]

10.6 > 8.7 \(\text{KW} \)

2. Two ways of calculation: Calculate \(V_i \) from \(T \) required torque, or from \(Q \) available flow.

2a.

\[
V_i = \frac{20 \times \pi \times T}{p} = \frac{20 \times \pi \times 55}{250} = 13.8 \text{ cm}^3/\text{rev}
\]

3a. Choose motor from \(V_i \) immediately greater
M5AS* 016 : \(V_i = 16.0 \text{ cm}^3/\text{rev} \)

4a. Check theoretical motor pressure

\[
\Delta p = \frac{20 \times \pi \times T}{V_i} = \frac{20 \times \pi \times 55}{16.0} = 216 \text{ bar}
\]

Torque loss at this pressure = 3.0 Nm (See page 17)
Calculate real pressure

\[
\Delta p_{\text{eff.}} = \frac{20 \times \pi \times (T + T_l)}{V_i} = \frac{20 \times \pi \times 58}{16.0} = 228 \text{ bar}
\]

5a. Flow loss at this pressure : 3.5 l/min (See page 17)
Real flow used by the motor :

\[
Q_{\text{eff.}} = 30 - 3.5 = 26.5 \text{ l/min}
\]

6a. Real speed of the motor :

\[
n_{\text{eff.}} = \frac{Q_{\text{eff.}} \times 1000}{V_i} = \frac{26.5 \times 1000}{16.0} = 1656 \text{ rpm}
\]

Real performances

\[
V_i = 16.0 \text{ cm}^3/\text{rev} \]

\[
n_{\text{eff.}} = 1656 \text{ rpm} \]

\[
T = 55 \text{ Nm.} \]

\[
\Delta p_{\text{eff.}} = 228 \text{ bar}
\]

2b.

\[
V_i = \frac{1000 \times Q}{n} = \frac{1000 \times 30}{1500} = 20.0 \text{ cm}^3/\text{rev}
\]

3b. Choose motor from \(V_i \) immediately smaller
M5AS* 018 : \(V_i = 18.0 \text{ cm}^3/\text{rev} \)

4b. Check theoretical motor pressure with \(T = 55 \text{ Nm} \)

\[
\Delta p = \frac{20 \times \pi \times T}{V_i} = \frac{20 \times \pi \times 55}{18.0} = 192 \text{ bar}
\]

Torque loss at this pressure = 3.3 Nm (See page 17)
Calculate real pressure

\[
\Delta p_{\text{eff.}} = \frac{20 \times \pi \times (T + T_l)}{V_i} = \frac{20 \times \pi \times 58.3}{18.0} = 204 \text{ bar}
\]

5b. Flow loss at this pressure : 4 l/min (See page 17)
Real flow used by the motor :

\[
Q_{\text{eff.}} = 30 - 4 = 26.0 \text{ l/min}
\]

6b. Real speed of the motor :

\[
n_{\text{eff.}} = \frac{Q_{\text{eff.}} \times 1000}{V_i} = \frac{26.0 \times 1000}{18.0} = 1444 \text{ rpm}
\]

Real performances

\[
V_i = 18.0 \text{ cm}^3/\text{rev} \]

\[
n_{\text{eff.}} = 1444 \text{ rpm} \]

\[
T = 55 \text{ Nm.} \]

\[
\Delta p_{\text{eff.}} = 204 \text{ bar}
\]

Fluid power formulas

Volumetric efficiency

\[
\text{Volumetric efficiency} = \frac{1}{1 + \frac{\text{total leakage} \times 1000}{\text{speed} \times \text{displacement}}}
\]

Mechanical efficiency

\[
\text{Mechanical efficiency} = \frac{1}{1 - \frac{\text{torque loss} \times 20 \times \pi}{\Delta \text{pressure} \times \text{displacement}}}
\]

Fluid motor speed

\[
\text{Fluid motor speed} = \frac{1000 \times \text{flow rate} \times \text{volumetric eff.}}{\text{displacement}}
\]

Fluid motor torque

\[
\text{Fluid motor torque} = \frac{\Delta \text{pressure} \times \text{displacement} \times \text{mech. eff.}}{20 \times \pi}
\]

Fluid motor power

\[
\text{Fluid motor power} = \frac{\text{speed} \times \text{displacement} \times \Delta \text{pressure} \times \text{overall eff.}}{600 \text{ 000}} \quad \text{or} \quad \text{torque} \times \text{speed} \times 20 \times \pi \times \frac{1}{600 \text{ 000}}
\]
Hydraulic Motors, Fixed
M5, Denison Vane Motors

Hydraulic fluids

Recommended fluids
Petroleum base anti-wear, anti-rust and anti-oxydation fluids (covered by Parker Denison HF-0 and HF-2 specifications). Maximum catalogue ratings and performance data are based on operation with these fluids.

Acceptable alternate fluids
The use of fluids other than petroleum base anti-wear R & O fluids requires that the maximum ratings of the motor will be reduced. In some cases, the minimum replenishment pressure must be increased.

- HF-1 : non antiwear petroleum base
- HF-4 : water glycols solutions
- HF-5 : synthetic fluids

HF-1, HF-4, HF-5 : The max. continuous pressure is limited to 210 bar
HF-4, HF-5 : The max. speed is limited to 1800 RPM

Fluids viscosity
The minimum Viscosity Index is 90. The kinematic viscosity range is as below. Over or under these values, please contact Parker.

Max. (cold start, low speed & pressure) 2000 cSt
Max. (full speed & pressure) 108 cSt
Optimum (max. lifetime) 30 cSt

Min. (full speed & pressure for HF-1, HF-4 & HF-5 fluids) 18 cSt
Min. (full speed & pressure for HF-0 & HF-2 fluids) 10 cSt

Fluids temperatures
The usual limiting factor of temperature (low or high) comes from the obtained viscosity. The seals are sometimes the limit.

Max. fluid temperature (also depends on min. viscosity) °C °F
- HF-0, HF-1, HF-2 + 100 (+ 212)
- HF-4 + 70 (+ 158)

Min. fluid temperature (also depends on max. viscosity) °C °F
- HF-0, HF-1, HF-2, HF-5 - 18 (- 0.4)
- HF-4 + 10 (+ 50)

Filtration requirements
The fluid must be cleaned before and during operation to maintain a contamination level of ISO 18/16/13 (NAS 1638 class 7) for motors with proportional pressure valve and ISO 19/17/14 (NAS 1638 class 8) or better for others. Filters must be installed accordingly.

Water contamination in fluid
The maximum acceptable content of water shall be limited to 0.10 % for mineral base fluids, and 0.05 % for synthetic fluids, crankcase oils, and biodegradable fluids. The eventual excess of water must be drained off the circuit.

Types of seals
Seals type 1 (S1) : Use this seal type for applications with mineral oil and fluid temperature less than + 90° C (+ 194° F).
S1 seals temperature range : -40°C to + 107° C (-40° F to + 225° F).

Seals type 5 (S5) : Use this seal type with some fire resistant fluids and/or fluid temperature higher than + 90° C (+194° F).
S5 seal temperature range : -29° C to + 204°C (-20° F to + 400°F).

Motor installation
The M5 Motor may be installed in any position providing that its drain line is correctly laid and that the loads on the shaft are clearly identified and acceptable. M5 Motors fitted with valves will require some light back pressure.

The M5A, M5AS, M5ASF, M5AF, M5BF motors are equipped with high load capacity double ball bearings, this allows a direct mounting on shaft (like a fan or a belt for example).

The M5B, M5BS motors are designed primarily for coaxial drives which do not impose axial or radial loads on the motor shaft.

The M5 externally drained motors must have a drain line connected to their housing drain port. It must be of a sufficient size to prevent back pressure in excess of 3.5 bar (50 PSI), and return directly to the reservoir below the minimum fluid level, as far away as possible from the suction pipe of the pump.

It is preferable to install the housing with its drain port upward to facilitate the purge of the motor. If the motor is mounted vertically with the shaft pointing up, then the drain line must have a bend above the motor to purge it fully and to be sure that the shaft seal is well lubricated.
Circuit Design

Minimum replenishment pressure during deceleration

The hydraulic circuit should be designed in a way that when switching off the hydraulic motor, it remains supplied with fluid, without risk of cavitation (anti-cavitation valve may be needed). Uni-rotational M5 Motors are fitted with an internal anti-cavitation valve.

An anti-starve check (loading) valve can be screwed directly onto the B port of the uni-rotational motors, to ensure the minimum replenishment pressure during deceleration phases of high inertia systems (i.e. fan drive).

For an optimum flow recirculation, use loading valves that can be directly threaded in the return port of the motor. Parker can offer these check valves with various cracking pressures, threads, sealing and connection standards.

RHV-R-ED valves for BSPP threaded ports. See Parker Tube Fitting Catalogue 4100- UK
RHV-M-ED valves for Metric threaded ports. See Parker Tube Fitting Catalogue 4100- UK
DT- MOMF valves for SAE threaded ports. See Parker Quick Coupling Catalog 3800

Reverse cycles for fan drives

The rotation way R or L of motors with reverse option is denoting the normal cooling function for which the solenoid of the directional control valve is not energised. To reverse the rotation way from cooling to cleaning, the solenoid of the directional control valve has to be energised.

The motor must be decelerated from its (max.) rotation speed to less than 500 rpm in no less than 4 seconds time before energizing the solenoid of the reverse valve.

In the same way the motor must be ramped up to its (max.) reverse rotation speed in no less than 4 seconds time.

There should be no signs of cavitation during the reverse cycle (abnormal noise or lack of replenishment pressure).

Connection of several motors in the same circuit

For application requiring several M5 motors to be driven simultaneously, we recommend to connect these in parallel circuits.

The use of several M5 motors connected in series is not recommended. Depending on the different inertia of the loads, the displacements and torque requirements, the motors may be subjected to pressure instability and noise. Also hydraulic pressure valves will not admit high levels of back pressure, restricting this use to motors without pressure valves. Please consult Parker.
Electrohydraulic valves

Mechanical pressure valve

Parker RAH101S, pilot operated spool-type design with hexa screw adjustment.
For pressure adjustment < 210 bar Parker RAH101S30
For pressure adjustment > 210 bar Parker RAH101S50
For more information see Parker Catalog HY 15-3502/US

Proportional pressure valve

Parker AP04G2YR serie, pilot operated spool-type design. Decreasing pressure with increasing current, this normally closed pressure relief valve defaults to its mechanically adjusted pressure setting value when no current is applied to its coil.
IP69K Integral TE Deutsch coil : 24VDC / 19W / 0,79 A / 30,3 Ohms.
(IP67 AMPJr coil available as special feature, consult Parker).

<table>
<thead>
<tr>
<th>Coil type</th>
<th>CCP024H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal wattage</td>
<td>19 W</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Continuous @ 100 % voltage</td>
</tr>
<tr>
<td>Magnetic wire insulation class</td>
<td>'N' Rated at 200° C</td>
</tr>
<tr>
<td>Temperature range</td>
<td>- 40° C to + 200° C</td>
</tr>
<tr>
<td>Temperature rise at nominal voltage and natural ventilation</td>
<td>P 95° C</td>
</tr>
</tbody>
</table>

Recommended PWM
Frequency : 250 Hz min.
Hysteresis @ 250 Hz PWM ≤ 7% of max. pressure setting

Proportional pressure valve set at 230 bar
Mineral oil @26cSt - Flow ≈ 17l/min - No PWM
Circuit Design

Reverse valve

Parker 4 way, 2 position directional control valve. Pilot operated spool type valve.

Additional flow data for motors with reverse valve option.
Motor in normal rotation way: Additional leakage = 0.5 lpm @ 210 bar with 26 cSt fluid.
Motor in reverse rotation way: Additional leakage = 3 lpm @ 210 bar with 26 cSt fluid.

IP69K Integral TE Deutsch coil: 24VDC / 14W / 0.58 A / 41.7 Ohms.
(IP67 AMP Jr coil available as special feature, consult Parker).

Start-up instructions

All Parker hydraulic vane motors are individually factory tested to provide the best quality & reliability. They are to be used within the operation limits indicated in our documentation. Only qualified personnel who is competent and familiar with the installation and operation of hydraulic drives and has hydraulic circuits and hydraulic equipment knowledge is allowed to put the equipment into operation. Make sure to have all necessary documentation available and always conform yourself to the valid regulations (safety, electrical, environment...).

Pre-start checks
- Before the initial installation of the motor, please remove the protective covers or plugs from the connection ports and pour some clean and suitable hydraulic fluid in all ports.
- Before the initial starting of the motor, the following checks should be made:
 a. Check the requested rotation way of the driven device and make sure that the hydraulic motor shaft will rotate accordingly.
 b. Check entry, outlet and drain lines to be sure all connections are tight and properly connected.
 c. Check the cleanliness of the piping, the hydraulic fluid type, its cleanliness and level. Make sure it can reach the motor entry port.
 d. Check the correct fixture of the hydraulic motor mounting flange and of its driven device. Check their correct coupling.
 e. For hydraulic motors with built-in solenoid valves, check the electrical wiring and the connections.

First start and air removing
- The pressure relief valve of the circuit should be backed off to its minimum setting value to keep the hydraulic motor unloaded when first started. Circuit priming and air bleed off have to be performed before resetting the pressure relief valve.
- Start the hydraulic motor rotation in a jogging manner until a prime is picked up, and increase its speed from 500 to 1000 rpm. Check that there is no leakage or air suction neither at the ports (inlet, outlet, drain), nor at the shaft end.
- It is important to bleed the air off the circuit, and off the hydraulic motor itself. Purge the air off, preferably using air bleed off valves or pressure test points. Let the hydraulic motor rotate several minutes unloaded.
- Hydraulic motors equipped with a built-in proportional pressure relief valve have to purge the air off the pressure valve in the following way: energize and de-energize the coil 5 times from 0 Amp to max current. Check that the proportional pressure relief valve is properly air bled off by running the hydraulic motor at full speed. It should rotate without vibrations or pulses.

Notes
- In case of very cold temperature, the hydraulic motor should be kept at low pressure and low speed until the fluid warms up, before running it at high pressure or speed.
- If the motor does not work properly or pressure cannot be obtained within seconds, it should be shut down and conditions corrected. Refer to the machine/vehicle manufacturer instructions and motor catalogue.
M5A - M5AS motor with rear ports

Dimensions

Weight: 11.0 kg

THREADED DRAIN PORTS
M12 x 1.5 (ISO 6149)
Mounting torque 100 N.m

THREADED PORTS
M22 x 1.5 (ISO 6149)
4 x 6 Square key

Centre of gravity (bi-rotational version)
160.6
65.4
14.0
58.6
56.4 ± 0.8
64.4 ± 0.8
55
110

SHAFT code 6
ISO G20N KEYED

SHAFT code 5
KEYED TAPER 1:5

Shaft code 5
Ø C
35.8/36.2
Ø D
19.8/20.0
E
22.3/22.43
F
4.03/4.08
G
21.9/22.1

Torque of the steel nut: 80 N.m
1) This torque is for a steel coupling and a nut of at least grade 8.8 quality.
It is compulsory to install a castle nut and cotter pin for right-hand rotation and bi-rotational use.
M5A - M5AS motor with opposite ports

Weight: 11.2 kg

Dimensions
M5A - M5AS motor with side ports

Dimensions

Weight: 12.2 kg

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France
M5A - M5AS motor with reverse valve option

Weight: 13.9 kg
M5ASF motor with opposite ports

SHAFT code 1

- SAE B-J744 (Modified)
- Taper 1:25:1000

SHAFT code 2

- SAE B Keyed

SHAFT code 5

- Keyed Taper 1:5

SHAFT code 6

- ISO G20N Keyed

UNI-ROTATIONAL VERSION

- Dimensions

Dimensions

- SHAFT code 1
 - Ø D: 22.09/22.22
 - Ø E: 25.64/25.77
 - Ø F: 6.31/6.36
 - Ø G: 31.6/32.0

- SHAFT code 2
 - Ø D: 19.8/20.0
 - Ø E: 22.3/22.43
 - Ø F: 4.03/4.08
 - Ø G: 21.9/22.1

- SHAFT code 5
 - Ø D: 35.8/36.2
 - Ø E: 22.0/22.22
 - Ø F: 6.35

- SHAFT code 6
 - Ø D: 54.0

- Centre of gravity (uni-rotational version)

- Mounting torque 10 N.m

- Torque of the nut: 80 Nm

1) This torque is for a steel coupling and a nut of least grade 8.8 quality.

2) It is compulsory to install a castle nut and cotter pin for right-hand rotation and bi-rotational use.

Dimensions

- Weight: 10.5 kg

M5, Denison Vane Motors
M5ASF motor with side ports

Weight: 11.5 kg

Dimensions

Hydraulic Motors, Fixed
M5, Denison Vane Motors

THREADED DRAIN PORT

W: SAE 6 (SAE J1926/1)
Y: M12 x 1.5 (ISO 6149)
Z: 1/4" BSPP

Mounting torque 100 N.m

THREADED PORTS

W: SAE 12 (SAE J1926/1)
Y: M22 x 1.5 (ISO 6149)
Z: 3/4" BSPP

DENISON VANE TECHNOLOGY
MADE IN FRANCE

Proportional pressure relief valve

Mounting torque 10 N.m

Torque of the nut: 80 Nm

Code 1

SHAFT code 5

KEYED TAPER 1:5

Uni-rotational version

Code 4

SHAFT code 6

SO-GUAN-660 E5

Centre of gravity (bi-rotational version)

Centre of gravity (uni-rotational version)

Shaft code 1

SAE B- J744 (modified)

TAPER 125:1000

Shaft code 6

ISO G20N KEYED

Shaft code 5

KEYED TAPER 1:5

Shaft code 2

SAE B KEYED

Uni-rotational version

Bi-rotational version

M5ASF motor with side ports

Weight: 11.5 kg

Dimensions

Hydraulic Motors, Fixed
M5, Denison Vane Motors
M5ASF motor with reverse valve option

Weight: 13.2 kg
M5B - M5BS motor with reverse valve option

Dimensions

Weight: 21.6 kg
M5BF motor with reverse valve option

Dimensions

Hydraulic Motors, Fixed
M5, Denison Vane Motors

Weight: 21.6 kg

MOUNTING TORQUE 100 N.m

Centre of gravity (bi-rotational version)

THREADED DRAIN PORT

M5BF motor with reverse valve option

MOUNTING TORQUE 10 N.m

Mounting torque 10 N.m

Torque of the steel nut: 80 Nm

1) This torque is for a steel coupling and a nut of least grade 8.8 quality.
It is compulsory to install a castle nut and cotter pin for right-hand rotation and bi-rotational use.

Shaft Code 1

Ø C 52.5/53.5
Ø D 28.7/28.95
E 25.02/25.15
F 6.36/6.31
G 35.2/35.45

Shaft Code W

SHAFT Code 2

ISO 3019/2 - G32N WITH M10 - 20 DEEP

SAE "B" - J744 (MODIFIED *)

with M16 TAPER 125:1000

SAE "C" - J744 WITH M10 - 20 DEEP

Mounting torque 10 N.m

Mounting torque 10 N.m

Mounting torque 50 N.m

Mounting torque 10 N.m

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Motors
Vierzon - France
WARNING — USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

Parker Hannifin Manufacturing France SAS
VPDE, Denison Vane Pumps
Vierzon - France
For a more complete overview of Parker product offerings, please see our interactive online marketing materials or contact one of our distributor partners.

www.parker.com