Modulating 3-Way Valve
Types MTW-9S, -17S, -21S

Patents: US 9371920, EP2956697 and other International Patents Pending
Features and Benefits
- Improved performance from modulated control
- Reduction in number of modulation valves required per system
 - Simplified system piping enables piping material cost reduction
 - Reduced install time enables labor cost reduction
 - Single actuator reduces control and wiring complexity
- Bi-sealing piston assembly

Description
The Modulating 3-Way (MTW) valve allows control of refrigerant flow through two outlet ports. Two valve pistons are attached to a connecting rod and also to the stepper motor. As the MTW valve modulates one port opens and the other port closes. The movement of the valve pistons relative to the two ports is inversely proportional.

Application
The MTW valve is typically located in the discharge line for dehumidification, reheat and heat reclaim applications. Sporlan recommends piping Outlet A to the normal condenser and Outlet B to the reclaim/reheat condenser. Outlet connections A and B are designated on the valve body, See Figure 1.

See capacity tables beginning on page 4. For additional refrigerant capacities and other applications, please contact Sporlan Division technical support.
Specifications

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>MTW-9S and MTW-17S</th>
<th>MTW-21S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Type</td>
<td>Permanent Magnet Bipolar Internal (Wet) Motor</td>
<td></td>
</tr>
<tr>
<td>Compatible Refrigerant</td>
<td>All Common HCFC, HFC & HFO Refrigerants</td>
<td></td>
</tr>
<tr>
<td>Compatible Oil</td>
<td>All Common Mineral, Polyolester & Aklybenzene Oils</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>12 Volts DC ± 10%</td>
<td>12 Volts DC +5% / -10%</td>
</tr>
<tr>
<td>Cable</td>
<td>Hermetic (20' Standard)</td>
<td>Removable M12 Connection, 20' Standard</td>
</tr>
<tr>
<td>Phase Resistance</td>
<td>75 Ohms ±10%</td>
<td>40 Ohms ± 10%</td>
</tr>
<tr>
<td>Holding Current</td>
<td>Not Recommended</td>
<td></td>
</tr>
<tr>
<td>Number of Full Steps</td>
<td>6,386 Full Steps</td>
<td></td>
</tr>
<tr>
<td>Step Rate</td>
<td>200 Steps per Second (PPS)</td>
<td></td>
</tr>
<tr>
<td>Initialization</td>
<td>6,386 Steps Closing</td>
<td></td>
</tr>
<tr>
<td>Overdriving</td>
<td>Recommended on 10% Overdrive Closed per Day Maximum</td>
<td></td>
</tr>
<tr>
<td>MRP/MAP/MWP</td>
<td>700 PSIG (48.3 Barg)</td>
<td>700 PSIG (48.3 Barg)</td>
</tr>
<tr>
<td>MOPD</td>
<td>400 CC/Min at 100 PSID (6.9 Bar) Dry Air</td>
<td></td>
</tr>
<tr>
<td>Maximum Internal Leakage</td>
<td>0.10 Oz/yr. at 300 PSIG (2.8 g/year at 20 Bar)</td>
<td></td>
</tr>
<tr>
<td>Maximum Fluid Temperature Range</td>
<td>-40°F to 240°F (-40°C to 116°C)</td>
<td>-40°F to 140°F (-40°C to 60°C)</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>240°F (116°C) for 15 Minutes (Wet Rag Required for Brazing)</td>
<td>0-100% (Condensing)</td>
</tr>
<tr>
<td>Mounting Orientation</td>
<td>Motor Assembly Above Horizontal</td>
<td></td>
</tr>
<tr>
<td>Flow Direction</td>
<td>Forward Flow Only</td>
<td></td>
</tr>
<tr>
<td>Certification</td>
<td>UL File: SA5460, CCN: SFJQ2/SFJQ8 (MTW-9S and -17S)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTW-9S - 9 ODF</td>
<td>183918</td>
</tr>
<tr>
<td>MTW-9S - 7 ODF</td>
<td>183919</td>
</tr>
<tr>
<td>MTW-9S - 5 ODF</td>
<td>183920</td>
</tr>
<tr>
<td>MTW-17S - 17 ODF</td>
<td>183921</td>
</tr>
<tr>
<td>MTW-17S - 13 ODF</td>
<td>183922</td>
</tr>
<tr>
<td>MTW-17S - 11 ODF</td>
<td>183923</td>
</tr>
<tr>
<td>MTW-21S - 21 ODF</td>
<td>183932</td>
</tr>
<tr>
<td>MTW-21S - 17 ODF</td>
<td>183831</td>
</tr>
<tr>
<td>MTW-21S - 13 ODF</td>
<td>183930</td>
</tr>
<tr>
<td>KIT MTW-9S</td>
<td>183924</td>
</tr>
<tr>
<td>KIT MTW-17S</td>
<td>183925</td>
</tr>
</tbody>
</table>

Nomenclature

<table>
<thead>
<tr>
<th>MTW</th>
<th>-9(S)</th>
<th>-9 ODF</th>
<th>-20'</th>
<th>-S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulating 3-Way Valve</td>
<td>Valve Model (Serviceable)</td>
<td>Fitting Size and Type</td>
<td>Cable Length</td>
</tr>
</tbody>
</table>

Product Offering

Wiring

In normal valve operation direction, 100% open = “A” port closed.
Capacities based upon 100°F condensing temperature, 60°F liquid entering expansion valve, isentropic compression plus 50°F evaporator temperature as shown plus 25°F superheat suction gas. Reference the table below for liquid correction factors.

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Refrigerant</th>
<th>Evaporator Temp (°F)</th>
<th>Pressure Drop Across Valve (psid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTW-9S</td>
<td>R-22</td>
<td>0 10 20 30 40 50 60 70 80 90 100</td>
<td>0.5 1 3 5 10 0.5 1 3 5 10 0.5 1 3 5 10</td>
</tr>
<tr>
<td>MTW-17S</td>
<td>R-22</td>
<td>0 10 20 30 40 50 60 70 80 90 100</td>
<td>0.5 1 3 5 10 0.5 1 3 5 10 0.5 1 3 5 10</td>
</tr>
<tr>
<td>MTW-21S</td>
<td>R-22</td>
<td>0 10 20 30 40 50 60 70 80 90 100</td>
<td>0.5 1 3 5 10 0.5 1 3 5 10 0.5 1 3 5 10</td>
</tr>
</tbody>
</table>

Correction Factors

Discharge and Suction Applications - (°F)

<table>
<thead>
<tr>
<th>REFRIGERANT</th>
<th>Liquid Temperature Entering Expansion Valve (°F)</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90°</th>
<th>100°</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>Correction Factor, CF Liquid Temperature</td>
<td>1.22</td>
<td>1.18</td>
<td>1.15</td>
<td>1.11</td>
<td>1.07</td>
<td>1.04</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.88</td>
<td>0.84</td>
</tr>
<tr>
<td>R-134a</td>
<td></td>
<td>1.27</td>
<td>1.22</td>
<td>1.18</td>
<td>1.14</td>
<td>1.09</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.91</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>R-407A</td>
<td></td>
<td>1.28</td>
<td>1.23</td>
<td>1.19</td>
<td>1.14</td>
<td>1.10</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.79</td>
</tr>
<tr>
<td>R-407C</td>
<td></td>
<td>1.26</td>
<td>1.22</td>
<td>1.18</td>
<td>1.13</td>
<td>1.09</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.91</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>R-407F</td>
<td></td>
<td>1.26</td>
<td>1.22</td>
<td>1.18</td>
<td>1.13</td>
<td>1.09</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.91</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>R-404A</td>
<td></td>
<td>1.34</td>
<td>1.29</td>
<td>1.23</td>
<td>1.17</td>
<td>1.12</td>
<td>1.06</td>
<td>1.0</td>
<td>0.94</td>
<td>0.88</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>R-507A</td>
<td></td>
<td>1.35</td>
<td>1.29</td>
<td>1.24</td>
<td>1.18</td>
<td>1.12</td>
<td>1.06</td>
<td>1.0</td>
<td>0.94</td>
<td>0.87</td>
<td>0.81</td>
<td>0.74</td>
</tr>
<tr>
<td>R-410A</td>
<td></td>
<td>1.26</td>
<td>1.22</td>
<td>1.18</td>
<td>1.13</td>
<td>1.09</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (-15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Flow Capacity
Discharge - kW

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Evaporator Temp (°C)</th>
<th>Refrigerant</th>
<th>Pressure Drop Across Valve (bar)</th>
<th>0.03</th>
<th>0.06</th>
<th>0.2</th>
<th>0.4</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTW-9</td>
<td>5</td>
<td>R-407F</td>
<td></td>
<td>15.0</td>
<td>21.1</td>
<td>38.4</td>
<td>54.5</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-407A</td>
<td></td>
<td>14.6</td>
<td>20.5</td>
<td>37.3</td>
<td>52.9</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td>-15</td>
<td>R-407A</td>
<td></td>
<td>14.1</td>
<td>19.9</td>
<td>36.1</td>
<td>51.2</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>-25</td>
<td>R-407A</td>
<td></td>
<td>13.6</td>
<td>19.2</td>
<td>34.9</td>
<td>49.4</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>R-407A</td>
<td></td>
<td>13.1</td>
<td>18.4</td>
<td>33.5</td>
<td>47.5</td>
<td>63.3</td>
</tr>
<tr>
<td>MTW-17</td>
<td>5</td>
<td>R-407A</td>
<td></td>
<td>28.5</td>
<td>39.9</td>
<td>71.6</td>
<td>101</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-407A</td>
<td></td>
<td>27.7</td>
<td>38.8</td>
<td>69.5</td>
<td>97.7</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>-15</td>
<td>R-407A</td>
<td></td>
<td>26.9</td>
<td>37.5</td>
<td>67.3</td>
<td>94.6</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>-25</td>
<td>R-407A</td>
<td></td>
<td>25.9</td>
<td>36.2</td>
<td>65.0</td>
<td>91.3</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>R-407A</td>
<td></td>
<td>24.9</td>
<td>34.8</td>
<td>62.5</td>
<td>87.8</td>
<td>116</td>
</tr>
<tr>
<td>MTW-21S</td>
<td>5</td>
<td>R-407A</td>
<td></td>
<td>59.5</td>
<td>79.3</td>
<td>131</td>
<td>176</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-407A</td>
<td></td>
<td>57.9</td>
<td>77.1</td>
<td>121</td>
<td>171</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>-15</td>
<td>R-407A</td>
<td></td>
<td>56.1</td>
<td>74.8</td>
<td>124</td>
<td>166</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>-25</td>
<td>R-407A</td>
<td></td>
<td>54.2</td>
<td>72.3</td>
<td>120</td>
<td>160</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>R-407A</td>
<td></td>
<td>52.3</td>
<td>69.7</td>
<td>115</td>
<td>154</td>
<td>196</td>
</tr>
</tbody>
</table>

Correction Factors
Discharge and Suction Applications - (°C)

<table>
<thead>
<tr>
<th>REFRIGERANT</th>
<th>Liquid Temperature Entering Expansion Valve (°C)</th>
<th>-15°</th>
<th>-10°</th>
<th>-5°</th>
<th>0°</th>
<th>5°</th>
<th>10°</th>
<th>15°</th>
<th>20°</th>
<th>25°</th>
<th>30°</th>
<th>35°</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>Correction Factor, CF Liquid Temperature</td>
<td>1.19</td>
<td>1.16</td>
<td>1.13</td>
<td>1.10</td>
<td>1.07</td>
<td>1.03</td>
<td>1.0</td>
<td>0.97</td>
<td>0.93</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>R-134a</td>
<td></td>
<td>1.24</td>
<td>1.20</td>
<td>1.16</td>
<td>1.12</td>
<td>1.08</td>
<td>1.04</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.87</td>
<td>0.83</td>
</tr>
<tr>
<td>R-407A</td>
<td></td>
<td>1.25</td>
<td>1.21</td>
<td>1.17</td>
<td>1.13</td>
<td>1.09</td>
<td>1.04</td>
<td>1.0</td>
<td>0.96</td>
<td>0.91</td>
<td>0.87</td>
<td>0.82</td>
</tr>
<tr>
<td>R-407C</td>
<td></td>
<td>1.23</td>
<td>1.20</td>
<td>1.16</td>
<td>1.12</td>
<td>1.08</td>
<td>1.04</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.87</td>
<td>0.83</td>
</tr>
<tr>
<td>R-407F</td>
<td></td>
<td>1.24</td>
<td>1.20</td>
<td>1.16</td>
<td>1.12</td>
<td>1.09</td>
<td>1.05</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.88</td>
<td>0.83</td>
</tr>
<tr>
<td>R-404A</td>
<td></td>
<td>1.30</td>
<td>1.25</td>
<td>1.20</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.0</td>
<td>0.95</td>
<td>0.89</td>
<td>0.83</td>
<td>0.77</td>
</tr>
<tr>
<td>R-507A</td>
<td></td>
<td>1.31</td>
<td>1.26</td>
<td>1.21</td>
<td>1.16</td>
<td>1.11</td>
<td>1.05</td>
<td>1.0</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.77</td>
</tr>
<tr>
<td>R-410A</td>
<td></td>
<td>1.23</td>
<td>1.20</td>
<td>1.16</td>
<td>1.12</td>
<td>1.08</td>
<td>1.04</td>
<td>1.0</td>
<td>0.96</td>
<td>0.92</td>
<td>0.87</td>
<td>0.83</td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (-15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Flow Capacity

Suction - Tons

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Refrigerant</th>
<th>Pressure Drop Across Valve (psid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTW-9S</td>
<td>R-22</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-134a</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-407A</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-407C</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td>MTW-17S</td>
<td>R-407F</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-404A</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-507A</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td></td>
<td>R-410A</td>
<td>0.5 1 3 5 10</td>
</tr>
<tr>
<td>MTW-21S</td>
<td>REFRIGERANT</td>
<td>0.5 1 3 5 10</td>
</tr>
</tbody>
</table>

Capacities based upon 60°F liquid and 25°F superheated vapor. Reference the table below for liquid correction factors.

Correction Factors

Discharge and Suction Applications - (°F)

<table>
<thead>
<tr>
<th>REFRIGERANT</th>
<th>Liquid Temperature Entering Expansion Valve (°F)</th>
<th>Correction Factor, CF Liquid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°</td>
<td></td>
</tr>
<tr>
<td>R-134a</td>
<td>1.22 1.18 1.15 1.11 1.07 1.04 1.0 0.96 0.92 0.88 0.84</td>
<td></td>
</tr>
<tr>
<td>R-407A</td>
<td>1.27 1.22 1.18 1.14 1.09 1.05 1.0 0.95 0.91 0.86 0.81</td>
<td></td>
</tr>
<tr>
<td>R-407C</td>
<td>1.28 1.23 1.19 1.15 1.10 1.05 1.0 0.95 0.90 0.85 0.79</td>
<td></td>
</tr>
<tr>
<td>R-407F</td>
<td>1.26 1.22 1.18 1.13 1.09 1.05 1.0 0.95 0.91 0.86 0.81</td>
<td></td>
</tr>
<tr>
<td>R-404A</td>
<td>1.35 1.29 1.24 1.18 1.12 1.06 1.0 0.94 0.89 0.84 0.79</td>
<td></td>
</tr>
<tr>
<td>R-410A</td>
<td>1.26 1.22 1.18 1.13 1.09 1.05 1.0 0.95 0.90 0.85 0.80</td>
<td></td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (~15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Flow Capacity

Suction - kW

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Pressure Drop Across Valve (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>R-22</td>
<td></td>
</tr>
<tr>
<td>R-134a</td>
<td></td>
</tr>
<tr>
<td>R-407A</td>
<td></td>
</tr>
<tr>
<td>R-407C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Evaporator Temp (°C)</th>
<th>Refrigerant</th>
<th>MTW-9S</th>
<th>MTW-17S</th>
<th>MTW-21S</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>5.0</td>
<td>46.7</td>
<td>47.7</td>
<td>48.3</td>
<td>49.2</td>
</tr>
<tr>
<td>-15</td>
<td>12.5</td>
<td>34.7</td>
<td>35.6</td>
<td>36.5</td>
<td>37.4</td>
</tr>
<tr>
<td>-25</td>
<td>19.1</td>
<td>25.4</td>
<td>26.4</td>
<td>27.3</td>
<td>28.2</td>
</tr>
<tr>
<td>-35</td>
<td>25.7</td>
<td>31.1</td>
<td>32.1</td>
<td>33.1</td>
<td>34.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Evaporator Temp (°C)</th>
<th>Refrigerant</th>
<th>MTW-9S</th>
<th>MTW-17S</th>
<th>MTW-21S</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>5.0</td>
<td>46.7</td>
<td>47.7</td>
<td>48.3</td>
<td>49.2</td>
</tr>
<tr>
<td>-15</td>
<td>12.5</td>
<td>34.7</td>
<td>35.6</td>
<td>36.5</td>
<td>37.4</td>
</tr>
<tr>
<td>-25</td>
<td>19.1</td>
<td>25.4</td>
<td>26.4</td>
<td>27.3</td>
<td>28.2</td>
</tr>
<tr>
<td>-35</td>
<td>25.7</td>
<td>31.1</td>
<td>32.1</td>
<td>33.1</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Correction Factors

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Liquid Temperature Entering Expansion Valve (°C)</th>
<th>Correction Factor, CF Liquid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>-15°</td>
<td>-10°</td>
</tr>
<tr>
<td>R-134a</td>
<td>1.19</td>
<td>1.16</td>
</tr>
<tr>
<td>R-407A</td>
<td>1.24</td>
<td>1.20</td>
</tr>
<tr>
<td>R-407C</td>
<td>1.25</td>
<td>1.21</td>
</tr>
<tr>
<td>R-407F</td>
<td>1.22</td>
<td>1.19</td>
</tr>
<tr>
<td>R-404A</td>
<td>1.24</td>
<td>1.20</td>
</tr>
<tr>
<td>R-507A</td>
<td>1.30</td>
<td>1.25</td>
</tr>
<tr>
<td>R-410A</td>
<td>1.31</td>
<td>1.26</td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (-15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Flow Capacity

Liquid - Tons

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Liquid Applications - (°F)</th>
<th>Capacity based upon 60°F liquid. Reference the table below for liquid correction factors.</th>
</tr>
</thead>
</table>

Correction Factors

Liquid Applications - (°F)

<table>
<thead>
<tr>
<th>REFRIGERANT</th>
<th>Liquid Temperature Entering Expansion Valve (°F)</th>
<th>Correction Factor, CF Liquid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°</td>
<td></td>
</tr>
<tr>
<td>R-134a</td>
<td>1.27 1.22 1.18 1.14 1.09</td>
<td>1.05 1.00 0.95 0.91 0.86 0.81</td>
</tr>
<tr>
<td>R-407A</td>
<td>1.32 1.27 1.21 1.17 1.12</td>
<td>1.06 1.00 0.94 0.88 0.82 0.76</td>
</tr>
<tr>
<td>R-407C</td>
<td>1.32 1.27 1.22 1.17 1.12</td>
<td>1.06 1.00 0.94 0.88 0.83 0.77</td>
</tr>
<tr>
<td>R-407F</td>
<td>1.32 1.27 1.22 1.17 1.12</td>
<td>1.06 1.00 0.94 0.88 0.83 0.77</td>
</tr>
<tr>
<td>R-507A</td>
<td>1.42 1.35 1.28 1.21 1.14</td>
<td>1.07 1.00 0.93 0.85 0.78 0.70</td>
</tr>
<tr>
<td>R-410A</td>
<td>1.33 1.28 1.22 1.17 1.11</td>
<td>1.06 1.00 0.94 0.88 0.82 0.76</td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (-15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Flow Capacity

Liquid - kW

<table>
<thead>
<tr>
<th>Valve Model</th>
<th>Evaporator Temp (°C)</th>
<th>Refrigerant</th>
<th>Pressure Drop Across Valve (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R-22</td>
<td>0.03 0.06 0.2 0.4 0.7</td>
</tr>
<tr>
<td>MTW-9S</td>
<td>83.1 117 212 299</td>
<td>80.1 113 204 288 379</td>
<td>0.03 0.06 0.2 0.4 0.7</td>
</tr>
<tr>
<td>MTW-17S</td>
<td>152 212 379 529</td>
<td>146 204 365 509 667</td>
<td>0.03 0.06 0.2 0.4 0.7</td>
</tr>
<tr>
<td>MTW-21S</td>
<td>250 333 549 731</td>
<td>241 321 528 704 887</td>
<td>0.03 0.06 0.2 0.4 0.7</td>
</tr>
</tbody>
</table>

Correction Factors

Liquid Applications - (°C)

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Liquid Temperature Entering Expansion Valve (°C)</th>
<th>Correction Factor, CF Liquid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-22</td>
<td>-15° -10° -5° 0° 5° 10° 15° 20° 25° 30° 35°</td>
<td></td>
</tr>
<tr>
<td>R-134a</td>
<td>1.24 1.20 1.16 1.12 1.08 1.04 1.0 0.96 0.92 0.88 0.83</td>
<td></td>
</tr>
<tr>
<td>R-407A</td>
<td>1.28 1.24 1.19 1.14 1.1 1.05 1.0 0.95 0.90 0.86 0.81</td>
<td></td>
</tr>
<tr>
<td>R-407C</td>
<td>1.30 1.25 1.20 1.15 1.1 1.05 1.0 0.95 0.90 0.84 0.79</td>
<td></td>
</tr>
<tr>
<td>R-407F</td>
<td>1.29 1.24 1.19 1.15 1.1 1.05 1.0 0.95 0.90 0.85 0.80</td>
<td></td>
</tr>
<tr>
<td>R-407T</td>
<td>1.29 1.24 1.19 1.15 1.1 1.05 1.0 0.95 0.90 0.85 0.80</td>
<td></td>
</tr>
<tr>
<td>R-410A</td>
<td>1.30 1.25 1.20 1.15 1.1 1.05 1.0 0.95 0.90 0.84 0.79</td>
<td></td>
</tr>
</tbody>
</table>

These correction factors correct for net refrigerating effect and are based on an evaporator temperature of 0°F (-15°C), however they may be used for any evaporator temperature because the variation in the factors across the range is insignificant.
Piping Diagram
Modulating 3-Way Valve

IB-G Interface Board

MTW-17S Modulating 3-Way Valve

Check Valve

Normal Condenser

Reclaim Condenser

Receiver

Catch-All® Filter-Drier

Superheat Control

See•All®

Type SER EEV

Evaporators

Compressor

Compressor

Evaporators

Evaporation

Evaporation
Dimensions - Inches (mm)

MTW-9S

Ø2.18 (55)
20' Cable with stripped and tinned ends (per customer request)

Add 5.25 (133) for motor removal

Standard 6.72 (171)
Serviceable 7.35 (187)

Standard 2.46 (62)
Serviceable 3.09 (78)

2.25 (57) to bottom for piston removal

MTW-17S

Ø2.18 (55)
20' Cable with stripped and tinned ends (per customer request)

Add 6.75 (171) for motor removal

Standard 8.26 (210)
Serviceable 8.80 (224)

Standard 3.37 (86)
Serviceable 3.92 (100)

Add 2.75 (70) to bottom for piston removal

Standard 1.61 (41)
Serviceable 2.15 (55)
⚠ WARNING – USER RESPONSIBILITY

Failure or improper selection or improper use of the products described herein or related items can cause death, personal injury and property damage.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed “Offer of Sale” available at www.parker.com.

For safety information see the Safety Guide at www.parker.com/safety or call 1-800-CParker.