The Compax3F is a part of the servo drive family of Parker Hannifin. It is especially designed for the requirements of electrohydraulic systems and in particular for position and force control of electrohydraulic axis.

Attention:
For application support and customized software, please contact your local Parker representative.

Large drive range
- Valves:
 - Proportional direction control valves
 - Proportional pressure relief- and pressure reducing valves
 - Flow valves
- Drives:
 - Cylinders
 - Rotary drives
 - Motors

Range of application
- Closed loop position and force control of linear cylinders and rotary drives
- Switching between position and force control
- Synchronous run with up to 64 axes

Typical applications
- Feeder axis
- Position and force control of press cylinders in material forming machines
- Roller clearance control in roller presses
- Die casting machines
- Custom-designed software packages on request

Ordering Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Interface</th>
<th>T11</th>
<th>T30</th>
<th>T40</th>
</tr>
</thead>
<tbody>
<tr>
<td>I11</td>
<td>Digital inputs/outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I12</td>
<td>Digital inputs/outputs</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>I20</td>
<td>Proflbus DP V0/V1/V2 (12 Mbit/s)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>I21</td>
<td>CANopen</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I22</td>
<td>DeviceNet</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>I30</td>
<td>PowerLink</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>I31</td>
<td>EtherCAT</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I32</td>
<td>Profinet</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Connection set for Compax3F included in delivery.
Complete kit with mating plug connectors (X1, X2 and X3) for Compax3 connectors, special shield connecting terminal and snap-on foot for mounting rail.

<table>
<thead>
<tr>
<th>Code</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M00</td>
<td>Standards</td>
</tr>
<tr>
<td>M10</td>
<td>Extension 12 digital I/Os & HEDA (motion bus)</td>
</tr>
<tr>
<td>M11</td>
<td>HEDA (motionbus)</td>
</tr>
<tr>
<td>M12</td>
<td>Extension 12 digital I/Os</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Technology functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>Positioning/pressure and force control</td>
</tr>
<tr>
<td>T30</td>
<td>Programmable motion control according to IEC61131</td>
</tr>
<tr>
<td>T40</td>
<td>Electronic Cam</td>
</tr>
</tbody>
</table>
Technical Data

Function
Motion control with motion profiles. Suitable for position and force/pressure control.

Housing / protection class
closed metal housing, isolation according to VDE 0160 / IP 20

<table>
<thead>
<tr>
<th>Supply voltage [VDC]</th>
<th>21...27, ripple <1VSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current requirements [A]</td>
<td>0,8 for the device, digital outputs 100 mA each</td>
</tr>
</tbody>
</table>

Supported feedback-systems
- Analog 0..20 mA, 4..20 mA, ±10 V
- Start-Stop-Interface
- SSI-Interface
- EnDat2.2-Interface
- 1VSS (max. 400 kHz) Interface, 13.5 Bit / Distance coding
- TTL (RS422) (max. 5 MHz), internal post-quadrature resolution

Set point generator
- Jerk-limited ramps
- Travel data in increments, mm, inches or variable by scale factor
- Specification of speed, acceleration, delay and jerk factor
- Force/pressure inputs in N, psi, etc. variable by scale factor

Monitoring functions
- Power/auxiliary supply range
- Following error monitoring
- Hard- and software switches

Inputs and Outputs
- 8 control inputs: 24 VDC / 10 kOhm
- 4 control outputs Active HIGH / short-circuit protected / 24 V / 100 mA
- 4 analog current input (14 Bit)
- 2 analog voltage input (14 Bit)
- 4 analog outputs (16 Bit, current or voltage) switchable in pairs

RS232 / RS485 (switchable)
- RS232: 115200 Baud
- Word length 8 bits, 1 start bit, 1 stop bit
- Hardware handshake XON, XOFF
- 9600, 19200, 38400, 57600 or 115200 Baud
- Word length 7/8 Bit, 1 Start-, 1 Stop bit
- Parity (switchable) even/odd

Bus systems
- Profibus DP V0-V2 (I20), 12 Mbit/s, PROFIdrive-Profil Drive technology
- CANopen (CIADS402) (I21)
- DeviceNet (I22)
- PowerLink (I30)
- EtherCAT (I31)
- Profinet (I32)

CE compliance
- EMC interference emission/limit values for industrial utilization according to EN61 800-3 first environment (commercial and residential area), class A via integrated mains filter for up to 10m cable length, otherwise with external mains filter
- EMC immunity/limit values for industrial utilization according to EN61 800-3

Insulation requirements
- Protection class I according to EN 50178 (VDE 0160 part 1)
- Contact protection: according to DIN VDE 0106, part 100
- Overvoltage: Voltage class III according to HD 625 (VDE 0110-1)
- Degree of contamination 2 according to HD 625 (VDE 0110 part 1) and EN 50178 (VDE 0160 part 1)

Environmental conditions

<table>
<thead>
<tr>
<th>Environmental conditions</th>
<th>General environmental conditions acc. to EN 60 721-3-1 to 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible ambient temperature</td>
<td>Operation: 0 to +45 °C class 3K3</td>
</tr>
<tr>
<td></td>
<td>Storage: -25 to +70 °C class 2K3</td>
</tr>
<tr>
<td></td>
<td>Transport: -25 to +70 °C class 2K3</td>
</tr>
<tr>
<td>Tolerated humidity: non condensing</td>
<td>Operation: <= 85 % class 2K3</td>
</tr>
<tr>
<td></td>
<td>Storage: <= 95 % class 3K3 (relative humidity)</td>
</tr>
<tr>
<td></td>
<td>Transport: <= 95 % class 2K3</td>
</tr>
<tr>
<td>Elevation of operating site: <=1000 m above sea level for 100 % load ratings</td>
<td>Please inquire for greater elevations</td>
</tr>
<tr>
<td></td>
<td>Protection class IP20 according EN 60 529</td>
</tr>
</tbody>
</table>

EMC directives and harmonised EC norms
- EC low voltage directive 73/23/EEC and RL 93/68/EEC: EN 50 178, General industrial safety norm Equipping electric power systems with electronic operating equipment HD 625, general electrical safety. Insulation principles for electrical operating equipment EN 60 204-1, Machinery norm, partly applied
- EC-EMC directive 89/336/EEC: EN 61 800-3, EMC norm Product standard for variable speed drives EN 50 081-2 ... 50 082-2, EN 61 000-4-2 ... 61 000-4-5

UL-Certification
- USL according to UL508 (listed) / CNL according to C22.2 No: 142-M1987 (listed)
- Certified: E-File-No: E198563

Weight
- 2.0 kg
Application example

Dimensions

Catalogue HY11-3500/UK
Application Example / Dimensions
Servo Drive
Series Compax3F

Application example

Dimensions

Parker Hannifin Corporation
Hydraulics Group
ActiveX plug-in for Integration with the Office environment
- Office and industrial environments are constantly growing closer together.
- The use of ActiveX technology allows simple integration into Office application.

Interface - Field bus
- Profibus DP
- CANopen (CiADS402)
- DeviceNet
- PowerLink
- EtherCAT
- Profinet
- Address configurable via Dip switch
Servo Drive
Series Compax3F

International standards in programming
• Programming system
 - CoDeSys
• Programming language
 - IEC61131-3
 - Function modules based on PLCopen

Jerk-limited set point generation, resulting in
• Gentle handling of the items being moved
• Increased service life of mechanical components
• Overshoot-free positioning
• Reduced excitation of mechanical resonance frequencies

Set up controller optimization
• Compax3F HydraulicsManager
 - All necessary technical data of Parker valves and drives are available
 - additional supported
• Test movement for automatic controller attitude
• Optimization with integrated oscilloscope function
• Automatic pre-setting of the controller for position control possible

d) 2-axis synchronous run and hydraulic specific functions
• Realization of many different circuit concepts with up to 4 proportional valves possible
• Linearization functions:
 - Consideration of the area of differential cylinders
 - Inverting of the valve set value
 - Compensation of the load pressure (additional pressure sensors necessary)
 - Correction of the nonlinear flow characteristic of the valve
 - Overlap compensation
 - Valve zero point correction
 - Valve set value filters
 - Valve set value limitation
 - All functions for each valve individually available
 - Automatic configuration by component selection in the Compax3 ServoManager

e) Custom-designed software packages on request

Control
a) General
• 2 control loops for each axis for combined position and force/pressure control

b) Position control
• Automatic controller design for position control
 - User-oriented optimization of parameters
• Feed forward control of speed and acceleration which results in:
 - Optimization of the response behaviour
 - Minimization of the following error

c) Force/Pressure controller
• PID controller with feed forward control of speed
Overview technology functions

<table>
<thead>
<tr>
<th>Function</th>
<th>T11</th>
<th>T30</th>
<th>T40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set tables for up to 31 motion profiles</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute or relative positioning</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Force/pressure control</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Electronic Gearbox</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dynamic positioning</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydraulic specific control technology</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reg-related positioning</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Programmable according to IEC61131-3</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Programming system CoDeSys</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Up to 6500 instructions</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipe table with 288 variables</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>PLCopen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark synchronization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cam switching mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cam profiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling and decoupling function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom-designed software packages*</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Digital I/Os (RS232/485)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Profibus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANopen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeviceNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet Powerlink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtherCAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profinet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x = Standard
O = Optional
* on request
Technology Function T11

Benefits
- No programming skills necessary
- Set table with various motion
- Full controller range available
- An ideal basis for many applications in high-performance motion automation

Function range T11
- Set tables for positioning, pressure and force control up to 31 motion profiles:
 - Absolute or relative positioning
 - Force/pressure control
 - Speed control
 - Electronic gearing
- Superimposed force and pressure control
- Controller switching between position and force/pressure control

Extended Function range
- Absolute force control
- Superimposed force and pressure control
- Controller switching between position and force/pressure control
- 2-axis synchronous

Absolute or relative positioning
A motion set defines a complete motion with all settable parameters
1. Target position
2. Travel speed
3. Maximum acceleration
4. Maximum deceleration
5. Maximum jerk

Reg-related positioning
For registration mark-related positioning, 2 motions are defined:
- RegSearch: Search of an external signal, e.g. a registration mark on a product
- RegMove: The external signal interrupts the search movement and the second movement by an offset follows without transition
- Precision of the registration mark detection: <1µs

Electronic Gearbox:
Motion synchronized to a master axis with any transmission ratio. The position of a master axis can be detected via:
- ±10 V analog input
- Step/direction command Input
- the encoder input or
- HEDA, with Compax3 Master

Stop movement
The Stop set interrupts the current motion set

Dynamic positioning
A new motion profile can be selected during a positioning sequence - a smooth transition takes place.
General
Due to its high flexibility and efficiency the Compax3 motion control according to PLCopen is for most applications the optimal basis for decentralized motion control.

Positioning with function modules based on PLCopen
- Programmable based on IEC61131-3
- Programming system: CoDeSys
- Up to 6500 instructions
- 500 16-bit variables / 150 32-bit variables
- Recipe table with 288 variables
- 3 16-bit saved variables (power failure protected) / 3 32-bit saved variables (power failure protected)
- PLCopen-function modules:
 - Positioning: absolute, relative, additive and continuous
 - Machine zero
 - Stop, energizing the power stage, quit
 - Position, device status, reading axis error
 - Electronic gearbox (Mc_GearIn)
- IEC61131-3-standard modules:
 - Up to 8 timers (TON, TOF, TP)
 - Trigger (R_TRIG, F_TRIG)
 - Flip-flops (RS, SR)
 - Counters (CTU, CTD, CTUD)
- Device-specific function modules:
 - C3_Input: reading digital inputs
 - C3_Output: writing digital inputs
 - C3_ReadArray: access to recipe table
- Inputs/outputs:
 - 8 digital inputs (24 V level)
 - 4 digital outputs (24 V level)
 - 6 analog inputs (14 bits)
 - 4 analog outputs (16 bits)
 - Optional addition of 12 digital inputs/outputs

PLCopen function blocks
- Absolute positioning
- Relative positioning
- Additive positioning
- Continuous positioning
- Stop
- Machine zero
- Energizing the power output stage
- Reading device status
- Reading axis error
- Acknowledging errors
- Reading the current position
- Electronic gearbox (gearing)

Example of a field bus interface controlled PLCopen application
- 2 control words are placed on the cyclic channel of the bus.
- The position data records (position, speed, acceleration etc.) are stored in a table (array).
- The desired position data record is selected with Controlword_2.
- The individual bits of Controlword_1 control positioning.
- A return message is sent via a status word on the cyclic channel of the bus.
Servo Drive
Series Compax3F

Technology Function T40

General
Compax3 T40 is able to simulate mechanical cams and cam switching mechanisms electronically. The T40 electronic cam was especially optimized for:

• The packaging machine industry
• The printing industry
• All applications, where a mechanical cam is to be replaced by a flexible, cyclic electronic solution

This helps to solve discontinuous material supply, flying-knife and similar drive applications using distributed drive technology.

Compax3 T40 supports both real and virtual master movements. In addition, the user can switch to other cam profiles or cam segments on the fly.

Programming is carried out in the well-known IEC61131-3 environment.

With the aid of the cam function modules and CamDesigner, cam applications can be implemented very easily.

Function T40

• Technology functions of the T30 version fully integrated and available
• Master position acquisition
• Mark synchronization
• Cam switching mechanism
• Coupling and decoupling function
• Cam profiles
• Cam memory
• Cam creation with CamDesigner

Master position acquisition

• Acquisition by incremental encoder
• Acquisition by the HEDA real-time bus
• Virtual Master:

A second axis in the IEC program can be used to program a motion profile, which serves as a master for one or several axes.

Mark synchronization

• Master or slave oriented (simultaneous, cam-independent)
• Highly-precise mark recognition (accuracy <1µs; Touch-probe)

Cam switching mechanism

• 36 cams with individual profiles
• 4 fast cams (125 µs per cam) standard: 500 µs
• 32 serial cams, 16 ms/cam cycle (0.5 ms/cam)
• Delay-time compensated cams: Compax3 can advance the cam to compensate for delays in switching elements.
Coupling and decoupling functions
- By means of a set point generator
- By means of a change-over function
- Without overspeeding by coupling over several master cycles
- Virtually free set-up of the coupling and decoupling movement
- Master-guided coupling movement
- Random standstill position

Cam profiles
- Up to 20 cam segments can be produced by:
 - Virtually random cam links (forwards and backwards)
 - Freely programmable event-controlled cam branches
 - Scalable cam segments and complete cam profiles

Cam memory
- 10,000 points (Master/Slave) in 24-bit format
- High-precision profile generation:
 - Variable point spacing with full backup of the current master and slave coordinates (even if the power fails)
 - Linear interpolation between points
- Cam memory for up to 20 curves
Connection of high-level controllers

a) Control via digital inputs/outputs
 Compax3 I11T30 / I11T40 / I12T11

 The digital I/Os can be optionally extended by 12 I/Os (M10 and M12 option).

b) Control via Profibus,
 Compax3 I20T11 / I20T30 / I20T40

 Profibus-ratings
 - DP-Versions: DPV0 / DPV1
 - Baud rate: [MBit/s] up to 12
 - Profibus ID: C320

c) Control via CANopen, Compax3 I21T30 / I21T40

 CANopen-ratings
 - Baud rate: [kBit/s] 20, 50, 100, 125, 250, 500, 800, 1000
 - Service-Data-Object: SDO1
 - Process-Data-Objects: PDO1, ..., PDO4

d) Control via DeviceNet, Compax3 I22T30 / I22T40

 DeviceNet-ratings
 - I/O - data: up to 32 bytes
 - Baud rate [kBit/s]: 125...500
 - Nodes: up to 63 Slaves

e) Control via Ethernet Powerlink,
 Compax3 I30T30 / I30T40

 Ethernet Powerlink ratings
 - Baud rate: 100 Mbits (FastEthernet)
 - Cycle time: <200 µs; to 240 nodes

f) Control via EtherCAT
 Compax3 I31T30 / I31T40

 EtherCAT-ratings
 - Baud rate: 100 Mbits (FastEthernet)
 - Cycle time: <200 µs; to 240 nodes

g) Control via Profinet I32T11 / I32T30 / I32T40

 Profinet ratings
 - Profinet version: Profinet IO (RT)
 - Transmission mode: 100 BASE-TX (Full Duplex)
 - Profinet ID: C332
Software Tool C3 ServoManager

Configuration is carried out on a PC using the Compax3 ServoManager.

- Wizard-guided configuration
 - Automatic querying of all necessary entries
 - Graphically supported selection
- Setup mode
 - Moving individual axes
 - Predefined profiles
 - Convenient operation
 - Storage of defined profiles
 - Controller pre-setting possible
- Integrated 4-channel oscilloscope
 - Signal tracing directly on the PC
 - Various modes (single/normal/auto/roll)
 - Zoom function
 - Export as image or table (for example to Excel)

Software Tool HydraulicsManager

- Simple set up of customer valves, cylinders and drives.
- Technical data of all Parker valves, cylinders and drives available.

Software Tool CamDesigner

- Standardized Nolte cam generating tool with:
 - Standard or extended range of functions
 - Evaluation of the motion profiles
 - Verification of the drive sizing
- Transition laws from VDI directive 2143:
 - Selection of motion laws
 - The CamDesigner basic version features 15 motion laws (based on the dwell-to-dwell (interpolation method))

Evaluation of the motion profile

Cam generation with the integrated CamEditor

C3 HydraulicsManager valve database
IEC61131-3 Programming language

IEC61131-3 is the only company- and product-independent programming language with worldwide support for industrial automation devices.

- IEC61131-3 includes graphical and textual programming languages:
 - Instruction list
 - Structured text
 - Ladder diagram
 - Sequential function chart
 - Function block diagram

Integrated standards offer:
- A trusted programming environment
- Standardized programming

Integrated standards reduce:
- The overhead of development
- Maintenance costs
- Software upkeep
- Training overhead

Integrated standards increase:
- Productivity
- Software quality
- Concentration on core competence

Examples

• Program development in IL

```
FUNCTION BLOCK AVAL_EXAMPLE
VAR_INPUT
  r1: REAL := 0.0;
END_VAR
VAR_OUTPUT
  sinus_REAL := 9.9;
END_VAR
LD r1
SIN
MUL 1000.0
ST sinus
LD r1
COS
MUL 1000.0
ST cosinus
LD r1
ADD .1
ST r1
```

• Instruction list (IL)

```
LD A
ANDN B
ST C
```

• Ladder diagram

```
A
B
_______
  |
  |
  C
```

• Structured text

```
C := A AND NOT B
```

• Function plan

```
A

/   \ 0
|     |
|     |
|     |
\     / 1

B

C
```
Function modules based on PLCopen
PLCopen is a product- and company independent organization that plays a significant role in supporting the IEC61131-3 programming language. Its specific tasks also include defining basic processes relevant to motion. The PLCopen organization consists of both users and manufacturers of automation components.

Parker Hannifin is an active member of the “Motion Control” task force. This is a great advantage for the users of Parker drive technology, since they are constantly able to profit directly from the latest developments in PLCopen.

Program development in CFC

Project management
Saving an entire project (source file) including symbols and comments to make service calls easier, because there is no need for any project data on the device itself
• Archiving projects as ZIP files
• Creating user-specific libraries that can be reused as tested sections of programs
 - These libraries can be protected
 - Examples include winders, synchronization components etc.
• Various user levels make it possible to lock sections of the program with passwords
• Depending on the task at hand, users can select from among 5 IEC languages plus CFC. These languages can also be mixed

Parker is a member of the “CoDeSys Automation Alliance”.

Professional development tool CoDeSys
CoDeSys is a development environment for programming that saves a significant amount of time as applications are created.
• One of the most powerful development environments available, established world-wide
• Universal programming platform for various devices
• Visual elements
• Library management for user-defined applications
• Context-sensitive help wizard
• Data exchange between devices from different manufacturers
• Complete online functionality
• Sophisticated technological features
• Standard function modules deposited
 . . . and all this free of charge
Connection set ZBH../.. (included in delivery)
Complete kit with mating plug connectors (X1, X2 and X3) for Compax3 connectors, special shield connecting terminal and snap-on foot for mounting rail.

Feedback cable GBK../..
Connection to the transducer:
Under the designation "REK.. + GBK.." (Feedback cable) we can deliver feedback connecting cables in various lengths to order.
• Prefabricated with plug and cable eye
• The plugs of the feedback cables contain a special surface area screening.
• Cable plans, if you wish to make up your own cables

Terminal block EAM06/..
For additional wiring of the inputs and outputs:
• Available with or without LED display
• Can be mounted in the control cabinet on a supporting rail
• Connection EAM06/.. via SSK23/.. to X11, SSK24/.. to X12
RS232 cable SSK01/..
(in various lengths).
Configuration:
Via a PC with the aid of the Compax3 ServoManager.
Communication:
Communication with Compax3 either via RS232 or via RS485 in order to read or write into objects.

Profibus plug BUS08/01
• BUS08/01 with 2 cable inputs (1x BUS08/01 incoming, 1x BUS08/01 continuing) and screw terminals, as well as a switch for activating the terminating resistor. Set to ON for first and last bus node terminating resistor activated.

Profibus cable: SSL01/.. not prefabricated
• Special cable in any length for Profibus wiring (colors according to DESINA).

HEDA Bus
HEDA bus terminal connector (RJ45) BUS07/01:
• For the first and last Compax3 in the HEDA bus.
HEDA cable: SSK28/.. prefabricated in various lengths:
• Cable for HEDA bus wiring from Compax3-to-Compax3 or PC-to-Compax3 powerPLmC or wiring of
 - Ethernet Powerlink (I30)
 - EtherCAT (I51)
 - Profinet (I32)

CANbus plug BUS10/01
• BUS10/01 with 2 cable inputs (1x BUS10/01 incoming, 1x BUS10/01 continuing) and screw terminals, as well as a switch for activating the terminating resistor. Set to ON for first and last bus node terminating resistor activated

CANbus cable SSL02/.. not prefabricated
• Special cable in any length for CANbus wiring (colours according to DESINA)
Connection set for Compax 3

<table>
<thead>
<tr>
<th>Connection set for Compax 3</th>
<th>ZBH 02/04</th>
<th>Z</th>
<th>B</th>
<th>H</th>
<th>0</th>
<th>2</th>
<th>/</th>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for I/Os without luminous indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for I/Os with luminous indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface cables and connectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC-Compax3 (RS232)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on X11/X13 (Transducer)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on X12 (I/O digital)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on X11 (Ref/Analog)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on X12 (I/O digital)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC - POP (RS232)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compax3 - POP (RS485)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compax3 HEDA - Compax3 HEDA</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>8</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or PC - C3powerC3mC</td>
<td></td>
<td>S</td>
<td>S</td>
<td>K</td>
<td>2</td>
<td>8</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Ethernet Powerlink (I30), EtherCAT (I31), Profinet (I32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compax3 X11 - Compax3 X11 (Encoder coupling of 2 axes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEDA bus terminal connector (for the 1st and the last Compax3 in the HEDA Bus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback cable for Balluff SSI transducer and start/stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback cable for SSI transducer and start/stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profibus cable 4)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profibus connector</td>
<td></td>
<td>B</td>
<td>U</td>
<td>S</td>
<td>0</td>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN-Bus cable 4)</td>
<td></td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>0</td>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN-Bus connector</td>
<td></td>
<td>B</td>
<td>U</td>
<td>S</td>
<td>1</td>
<td>0</td>
<td>/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length code for SSK27

Length code

1) Length code
 Length code 1 (Example: SSK01/09: Length 25 m)
 Length [m] 1.0 2.5 5.0 7.5 10.0 12.5 15 20 25 30 50
 Code 01 02 03 04 05 06 07 08 09 10 14

2) Length code for SSK28
 Length code 2 (Example: SSK28/22: Length 3 m)
 Length [m] 0.25 0.5 1.0 3.0 5.0 10.0
 Code 20 21 01 22 03 05

3) Length code for SSK27
 Length A: Cable or connection from POP with one Compax3 (POP - 1.Compax3), variable length according to length code 1)
 (Example: SSK27/01/01: Length 1.0 m)
 Length B: Cable or connection from POP with more than one Compax3 (nn > 01) (1.Compax3 - 2.Compax3 - …), length between Compax connectors is fixed to 50 cm, variable length A from POP with first Compax according to length code 1)
 (Example: SSK27/03/01: Length 1.0 m)

4) Colours according to DESINA