FOCUSED ON COMPRESSED AIR TREATMENT

Heat Reactivated Dessicant Dryers | TWP & TWB Series

ENGINEERING YOUR SUCCESS.
FOCUSED ON
EFFICIENCY

Parker Airtek Externally Heated and Blower Purge Desiccant Air Dryers use the absorption method to remove moisture from compressed air. Nominal pressure dew point of -40°F (-40°C) is achieved by directing the flow of saturated compressed air over a bed of desiccant.

The most commonly used desiccant is activated alumina, a spherically shaped, hygroscopic material, selected for its consistent size, shape and extreme surface to mass ratio. This physically tough and chemically inert material is contained in two pressure vessels commonly referred to as “dual” or “twin” towers. As the saturated compressed air flows through the bed of the “on-line” tower, its moisture content adheres to the surface of the desiccant.

The dry compressed air is then discharged from the vessel into the distribution system.

An Allen-Bradley® PLC cycles the flow of compressed air between the towers. While one tower is “on-line” drying, the other tower is “off-line” regenerating. Regeneration, sometimes referred to as “purging”, is the process of stripping the accumulated moisture from the “off-line” bed.

Both types of Parker Airtek Heat Reactivated Dryers combine heat with either a small portion of the dried compressed air or with forced ambient air to affect regeneration. The heated, low pressure purge air flows gently through the regenerating bed, adsorbing the moisture that accumulated on the surface of the desiccant during the drying cycle and exhausting it to the atmosphere.

Model TWB
Parker Airtek’s patented Multi-Port Regeneration System (TWP Series) affects superior desiccant bed regeneration and, as a result, provides better and more consistent performance. The Multi-Port Regeneration System injects heated purge air at precise points up and down the towers’ length providing a more balanced distribution of heat. This system prevents the desiccant on top from prematurely deteriorating while providing the bottom of the chamber with enough heated purge air to allow complete regeneration on every cycle.

The energy saving temperature monitoring system senses the exiting purge air temperature. When the purge air temperature increases to a pre-set point at which the desiccant bed is fully heated and regenerated, the heater is turned off.

Parker Airtek’s Primary Blowdown System is standard on TWP Series 401 and larger and TWB Series 1001 and larger. It improves performance and efficiency while increasing desiccant life. The depressurization stage also strips moisture from the bottom of the tank through a purge muffler.

Once depressurization is complete, the system switches to the main exhaust where final regeneration is accomplished with low pressure purge air. By eliminating the main exhaust mufflers, back pressure is also eliminated which allows for more thorough regeneration and less maintenance.

Up Flow Versus Down Flow Drying
In the event of prefilter/auto drain failure, up flow drying protects the desiccant bed from contamination of bulk liquids and oil since they stay on the bottom of the tank and get discharged during blowdown. With downflow drying, any liquids put into the dryer by inefficient pre-filtration or drain failure will collect at the bottom of the vessel. As a result of this liquid presence, the upflow regeneration cannot lift the liquid slugs through the entire desiccant bed, resulting in liquid being sent downstream at tower switch over.
Control Enclosures

Low Voltage Control Box

Parker Airtek’s touch screen interface controller comes in an all inclusive package for all of our heated and blower purge dryers. These dryers ranging from 200 scfm and larger include an LCD user interface and responsive data retrieval for all your important dryer information. This custom innovative touch screen control is cutting-edge and guarantees hassle-free dryer maintenance and diagnostics.

- 7” HMI, Allen-Bradley® PLC
- Flash drive port for transferring data log
- Serial communications port (optional)
- Remote panel access via ethernet for communications port
- Full color graphics touch panel control for user interface
- User friendly help screens assist in troubleshooting
- 120 VAC power and control solenoids (Other power options available)
- Heatless backup operation
 - Manual stepping
 - Supplemental cooldown (TWB Series)
- Alarms with alarm relay
 - Tower failed to blow down (switch failure)
 - Tower failed to pressurize
 - High and low purge temperatures
 - High muffler pressure
 - Low purge pressure (TWP Series)
 - High inlet temperature
 - Low inlet pressure
 - High pre and after filter differential pressures
 - Blower overload (blower purge only)
 - Low blower flow
 - Stuck drain switch (1500 scfm & larger)
 - High and low user sensor values
 - Sensor probe failure for all sensors
 - Switch failure alarm
- PowerLoc® energy management system
 - Digital dewpoint readout
 - Digital dewpoint control
 - High humidity alarm
 - Optional 4-20 mA signal output
 - Two extra user defined 4-20 mA inputs with setpoints and alarms for connection to your flow meter, power meter, etc.
 - Automatic data logging 24/7, 365 days of all operational information
 - QR code to connect to live chat
 - Temperature pressure indication package with digital display and alarms
- ETL listed (UL/CSA Standards)

High Voltage Control Box

- Single point connection
- Dual contactors for heater control
- Primary cycling contactor controls heater operation
- Secondary over-temperature contactor protects circuit
- ThermaLoc® redundant heater contactors provide the maximum in heater system protection (5 year heater warranty)
- Built-in fused secondary voltage transformer
- Blower overload protection and motor starters (TWB Series)
Without proper filtration, desiccant air dryers will not operate. Desiccant dryers are designed to adsorb vapor from compressed air, not liquid. When liquid, especially oil, is allowed to enter the desiccant chamber, it coats the desiccant material preventing any further adsorption. Oil coated desiccant can not be regenerated, and must be replaced.

The coalescing pre-filter is installed at the dryer inlet. It protects the dryer by removing liquids and reducing the contamination level of the compressed air. A differential pressure gauge is provided to determine element condition.

A zero air loss float drain is provided on systems 200 through 1200 scfm to ensure proper drainage. On systems 1500 scfm and larger, a zero air loss demand drain and electronic timed drain are provided. The drain (1500 scfm & larger) is controlled via the PLC, which includes a test function and user settings for time open and delay.

To protect downstream equipment from desiccant dust, a high temperature particulate after-filter is installed at the dryer discharge. The after-filter element is designed to remove solid particulates from compressed air. The hybrid pleated filter media provides high dirt retention, low pressure drop, and long element life. A DP gauge is provided to determine element condition.

Most field problems experienced with desiccant air dryers are the result of improper filter selection, installation, maintenance, and/or draining of condensate. Considering the importance of filtration to dryer performance, Parker Airtek recommends that all desiccant dryers be ordered as a complete, factory assembled Air Treatment System.

Factory packaging, with matched components and single point connections reduces installation costs, ensures performance and allows Parker Airtek to assume total responsibility for system integrity.

Filter Package Schematic

Package “B”
(Standard TWP/TWB201 - TWP/B801)
(Optional for TWP/TWB1001 and Larger)
Includes dryer with factory installed pre-filter and after-filter with system bypass

Package “F”
(Standard TWP/TWB1001 & Larger)
Includes dryer with factory installed pre-filter and after-filter

Package “D” (Optional for all models)
Includes dryer with factory installed dual selectable pre and after-filters with system bypass
Energy savings can be achieved with the proven PowerLoc energy management system. Regeneration requirements are dependent on flow, pressure and temperature. The PowerLoc system allows the cost of drying compressed air to be matched exactly to your plant conditions.

PowerLoc controls the drying cycle by continuously reacting to the loading under which the dryer is operating and minimizes the energy input required.

As dryers rarely operate at full rated capacity all of the time (e.g. during shift work and periods of low demand), this energy management system will provide considerable energy savings.

PowerLoc® Energy Management System Standard

Energy savings can be achieved with the proven PowerLoc energy management system. Regeneration requirements are dependent on flow, pressure and temperature. The PowerLoc system allows the cost of drying compressed air to be matched exactly to your plant conditions.

PowerLoc controls the drying cycle by continuously reacting to the loading under which the dryer is operating and minimizes the energy input required.

As dryers rarely operate at full rated capacity all of the time (e.g. during shift work and periods of low demand), this energy management system will provide considerable energy savings.

Compressed Air Quality to ISO 8573.1:2010

The Industry Standard Method for Specifying Compressed Air Cleanliness

The ISO 8573.1:2010 international standard for compressed air quality provides a simple system of classification for the three main contaminants present in any compressed air system - dirt, water, and oil. To specify the quality class required for a particular application, simply list the class for each contaminant.
The tower, heater, and purge lines are insulated to increase dryer performance and efficiency by reducing radiant heat loss. It also keeps the unit within the safety parameters set forth by OSHA. Insulation suitable for indoor service is standard on all Parker Airtek heat reactivated dryers (Insulation suitable for outdoor service is an available option).

High Performance Components

Tower insulation
The tower, heater, and purge lines are insulated to increase dryer performance and efficiency by reducing radiant heat loss. It also keeps the unit within the safety parameters set forth by OSHA. Insulation suitable for indoor service is standard on all Parker Airtek heat reactivated dryers (Insulation suitable for outdoor service is an available option).

Angle Seat Valves
TWP/TWB201 - TWP/TWB 801
Dryers up to 800 scfm are equipped with angle seat valves. Versatile and durable best describes these valves which can surpass millions of cycles.
- High performance poppet valve
- Stainless steel body
- Stainless steel internals
- PTFE seal
- Air activated, spring return
- Visual position indicator on exhaust valves
- ANSI Class VI shutoff
- Long service life
- Repair kits available
- 5 year valve warranty

Actuated Butterfly Valves
TWP/TWB1001 - TWP/TWB & Larger
High Performance Actuated Butterfly Switching Valves are standard on dryers 1000 scfm and larger. These premium, air operated butterfly valves are specifically designed for compressed air. They provide more opening and closing force compared to other types of valves. An indicator shows the “opened/closed” position of the valve and service can be performed without disturbing dryer piping.
- High performance valve
- Non-lubricated
- Carbon steel body
- Stainless steel internals
- PTFE seat
- Double offset stem and disc design for reduced seatwear and zero leakage
- Repair kits available
- 5 year valve warranty
Standard Equipment

Factory Installed Filtration
- Single point connection for system integrity
- Differential pressure indicators for element condition
- Filter drain(s)

Switching Valves
- Five year switching valve warranty from manufacturer's defects (see warranty policy)

Heater
- Five year heater warranty from manufacturer's defects (see warranty policy)

Allen-Bradley® PLC
- 7" LCD Touchscreen
- All critical information available
- Automatic data logging

PowerLoc™ Energy Demand Control
- Digital dewpoint readout and control
- High humidity alarm
- Repressurization circuit

Additional Features
- Energy savings temperature monitoring system
- Heatless backup mode
- Separate tower pressure gauges
- Exhaust mufflers with safety relief
- ASME/CRN vessels
- Tower insulation
- Desiccant fill and drain ports
- Safety relief valves
- Stainless steel diffuser screens
- Control air line filter
- ETL listed (UL/CSA standards)
- LED din connector(s) all solenoid valves
- 480 VAC power (other options available - consult factory)
- Steel base TWP/B 1001 and larger
- Two year dryer warranty (parts and labor)

Options
- Custom filter packaging
- All NEMA classifications
- Control air tubing - stainless steel
- Low ambient package
 -20°F to +40°F air temperature
- Instrumentation
 - Locally mounted pressure and temperature gauges at inlet and outlet
- ASME B31.3 piping
- Corrosion allowance

LED Din Connectors
- Easy to maintain and service
- Valve(s) may be serviced without opening electrical enclosure
- No hard wiring required
- Visual indication of valve activation
- Valve labeling
TWP Product Selection

-40°F (-40°C) with Activated Alumina Desiccant

<table>
<thead>
<tr>
<th>Model</th>
<th>Flowrate at 100 psig (scfm)</th>
<th>Heater (kW)</th>
<th>Dimensions ins (mm)</th>
<th>Weight lbs</th>
<th>Dryer Air In/Out</th>
<th>Pre-Filter</th>
<th>After-Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWP201</td>
<td>200 3 82(2083) 45(1143) 47(1194) 920 417</td>
<td>AAP030GNFI</td>
<td>JC0350-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP251</td>
<td>250 4 81(2032) 44(1118) 48(1219) 1180 535</td>
<td>AAP035GNFI</td>
<td>JC0350-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP301</td>
<td>300 4 85(2159) 44(1118) 48(1219) 1370 621</td>
<td>AAP035GNFI</td>
<td>JC0350-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP401</td>
<td>400 6 87(2210) 53(1346) 51(1295) 1700 771</td>
<td>AAP040HNFI</td>
<td>JC0625-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP501</td>
<td>500 6 86(2184) 55(1397) 51(1295) 2060 934</td>
<td>AAP000GFNI</td>
<td>JC0625-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP601</td>
<td>600 9 93(2362) 57(1448) 51(1295) 2350 1066</td>
<td>AAP045INFI</td>
<td>JC0625-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP801</td>
<td>800 9 92(2337) 68(1727) 56(1295) 3035 1377</td>
<td>AAP055JNFI</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP1001</td>
<td>1000 13 103(2616) 78(1981) 63(1422) 4195 1903</td>
<td>AAP055JNFI</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP1201</td>
<td>1200 13 116(2946) 78(1981) 63(1422) 5215 2365</td>
<td>AAP055JNFI</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP1501</td>
<td>1500 18 115(2921) 114(2896) 66(1600) 7765 3522</td>
<td>AAP055JNFI</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP2001</td>
<td>2000 25 113(2870) 120(3048) 72(1818) 8565 3885</td>
<td>AAP055JNFI</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP2501</td>
<td>2500 25 111(2819) 144(3658) 78(2032) 11562 5234</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP3001</td>
<td>3000 30 111(2819) 144(3658) 78(2032) 12002 5444</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP4001</td>
<td>4000 50 113(2870) 168(4267) 96(2438) 18260 8283</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP5001</td>
<td>5000 50 112(2845) 180(4572) 96(2438) 19760 9343</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP6001</td>
<td>6000 60 112(2845) 186(4724) 96(2438) 22260 10097</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWP7501</td>
<td>7500 85 137(3480) 204(5184) 109(2769) 26860 12183</td>
<td>AAP06001OXX</td>
<td>JC1000-FH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correction Factors

To obtain dryer capacity at new conditions, multiply nominal capacity x C1 x C2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow Range @ 100 psig (7 barg)</th>
<th>Dewpoint Design Pressure</th>
<th>Pressure Relief Valve Setpoint</th>
<th>Max Operating Pressure</th>
<th>Min Operating Pressure</th>
<th>Max Inlet Temp</th>
<th>Min Inlet Temp</th>
<th>Standard Electrical Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWP201 - TWP251</td>
<td>200 - 250 cfm</td>
<td>-40°F (-40°C) Standard</td>
<td>165 psig (10.3 barg)</td>
<td>150 psig (10.3 barg)</td>
<td>80 psig (5.5 barg)</td>
<td>120°F (49°C)</td>
<td>50°F (10°C)</td>
<td>240V/1Ph/60Hz 480V/3Ph/60Hz (Optional)</td>
</tr>
<tr>
<td>TWP301 - TWP1501</td>
<td>300 - 1500 cfm</td>
<td>-40°F (-40°C) Standard</td>
<td>165 psig (10.3 barg)</td>
<td>150 psig (10.3 barg)</td>
<td>80 psig (5.5 barg)</td>
<td>120°F (49°C)</td>
<td>50°F (10°C)</td>
<td>480V/3Ph/60Hz (Optional)</td>
</tr>
<tr>
<td>TWP2001 - TWP7501</td>
<td>2000 - 7500 cfm</td>
<td>-40°F (-40°C) Standard</td>
<td>150 psig (10.3 barg)</td>
<td>135 psig (9.3 barg)</td>
<td>80 psig (5.5 barg)</td>
<td>120°F (49°C)</td>
<td>50°F (10°C)</td>
<td>480V/3Ph/60Hz (Optional)</td>
</tr>
</tbody>
</table>

Notes

- Above information should be used as a guideline. Flows are at 100 psig inlet pressure, 100°F inlet temperature and 100°F ambient temperature.
- For specific applications, please consult Parker Airtek Applications Engineering.
- For sizing at other temperatures and pressures, please consult factory.
- Weight includes desiccant (shipped loose in TWP201 and up).
- Dimensions and weight shown on Models TWP201 — TWP801 are with Package B.
- Dimensions and weight shown on Models TWP1001 and larger are with Package F.
- Pressure relief valve variance +/- 10%.

Correction Factors

- Temperature Correction Factor CFT

 | Maximum Inlet Temperature (C1) | °F | -80 | -85 | -90 | -95 | -100 | -105 | -110 | -115 | -120 |
 | CFT | 1.17 | 1.17 | 1.17 | 1.17 | 1.15 | 1.00 | 0.87 | 0.76 | 0.66 | 0.58 |

- Pressure Correction Factor CFP

 | Minimum Inlet Pressure (C2) | psi g | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 |
 | CFP | 0.83 | 0.83 | 0.87 | 0.91 | 0.96 | 1.00 | 1.04 | 1.09 | 1.13 | 1.17 | 1.22 | 1.26 | 1.31 |
TWB Product Selection

-40°F (-40°C) with Activated Alumina Desiccant

<table>
<thead>
<tr>
<th>Model</th>
<th>Flowrate @ 100 psig (scfm)</th>
<th>Blower (HP)</th>
<th>Heater (kW)</th>
<th>Dimensions ins (mm)</th>
<th>Weight</th>
<th>Dryer Air In/Out</th>
<th>Pre-Filter</th>
<th>After-Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWB201</td>
<td>200</td>
<td>75</td>
<td>6</td>
<td>82 (2083)</td>
<td>57 (1448)</td>
<td>44 (1118)</td>
<td>5030 GFI</td>
<td>AAP030GNFI JC0350-FH</td>
</tr>
<tr>
<td>TWB301</td>
<td>300</td>
<td>1.5</td>
<td>6</td>
<td>84 (2134)</td>
<td>58 (1473)</td>
<td>44 (1118)</td>
<td>7500 GFI</td>
<td>AAP035GNFI JC0350-FH</td>
</tr>
<tr>
<td>TWB401</td>
<td>400</td>
<td>1.5</td>
<td>9</td>
<td>87 (2210)</td>
<td>65 (1651)</td>
<td>56 (1422)</td>
<td>9700 GFI</td>
<td>AAP040HNFI JC0400-FH</td>
</tr>
<tr>
<td>TWB501</td>
<td>500</td>
<td>3</td>
<td>12</td>
<td>85 (2159)</td>
<td>66 (1674)</td>
<td>48 (1245)</td>
<td>11900 GFI</td>
<td>AAP045HNFI JC0402-FH</td>
</tr>
<tr>
<td>TWB601</td>
<td>600</td>
<td>3</td>
<td>12</td>
<td>89 (2261)</td>
<td>73 (1854)</td>
<td>52 (1321)</td>
<td>14200 GFI</td>
<td>AAP055HNFI JC0500-FH</td>
</tr>
<tr>
<td>TWB801</td>
<td>800</td>
<td>5</td>
<td>15</td>
<td>96 (2526)</td>
<td>85 (2215)</td>
<td>70 (1778)</td>
<td>19500 GFI</td>
<td>AAP0800-FH JC0800-FH</td>
</tr>
<tr>
<td>TWB1001</td>
<td>1000</td>
<td>5</td>
<td>18</td>
<td>103 (2616)</td>
<td>78 (1981)</td>
<td>60 (1524)</td>
<td>24500 GFI</td>
<td>AAP105HNFI JC1000-FH</td>
</tr>
<tr>
<td>TWB1201</td>
<td>1200</td>
<td>4</td>
<td>25</td>
<td>116 (2946)</td>
<td>78 (1981)</td>
<td>69 (1753)</td>
<td>30000 GFI</td>
<td>AAP125HNFI JC1200-FH</td>
</tr>
<tr>
<td>TWB1501</td>
<td>1500</td>
<td>7.5</td>
<td>30</td>
<td>114 (2916)</td>
<td>114 (2986)</td>
<td>66 (1676)</td>
<td>37000 GFI</td>
<td>AAP150HNFI JC1500-FH</td>
</tr>
<tr>
<td>TWB2001</td>
<td>2000</td>
<td>7.5</td>
<td>38</td>
<td>113 (2870)</td>
<td>132 (3355)</td>
<td>72 (1829)</td>
<td>50000 GFI</td>
<td>AAP200HNFI JC2000-FH</td>
</tr>
<tr>
<td>TWB2501</td>
<td>2500</td>
<td>10</td>
<td>50</td>
<td>111 (2819)</td>
<td>148 (3767)</td>
<td>84 (2134)</td>
<td>62500 GFI</td>
<td>AAP250HNFI JC2500-FH</td>
</tr>
<tr>
<td>TWB3001</td>
<td>3000</td>
<td>10</td>
<td>60</td>
<td>111 (2819)</td>
<td>168 (4267)</td>
<td>84 (2134)</td>
<td>75000 GFI</td>
<td>AAP300HNFI JC3000-FH</td>
</tr>
<tr>
<td>TWB4001</td>
<td>4000</td>
<td>15</td>
<td>85</td>
<td>113 (2870)</td>
<td>180 (4572)</td>
<td>96 (2483)</td>
<td>97500 GFI</td>
<td>AAP400HNFI JC4000-FH</td>
</tr>
<tr>
<td>TWB5001</td>
<td>5000</td>
<td>20</td>
<td>100</td>
<td>112 (2845)</td>
<td>192 (5004)</td>
<td>102 (2438)</td>
<td>120000 GFI</td>
<td>AAP500HNFI JC5000-FH</td>
</tr>
<tr>
<td>TWB6001</td>
<td>6000</td>
<td>20</td>
<td>120</td>
<td>112 (2845)</td>
<td>196 (5034)</td>
<td>102 (2591)</td>
<td>145000 GFI</td>
<td>AAP600HNFI JC6000-FH</td>
</tr>
<tr>
<td>TWB7501</td>
<td>7500</td>
<td>25</td>
<td>150</td>
<td>137 (3480)</td>
<td>204 (5182)</td>
<td>105 (2692)</td>
<td>190000 GFI</td>
<td>AAP750HNFI JC7500-FH</td>
</tr>
</tbody>
</table>

Notes
- Above information should be used as a guideline. Flows are at 100 psig inlet pressure, 100°F inlet temperature and 100°F ambient temperature.
- For specific applications, please consult Parker Airtek Applications Engineering.
- For sizing at other temperatures and pressures, please consult factory.
- Weight includes desiccant (shipped loose Models TWB2001 and up).
- Dimensions and weight shown on Models TWB201 — TWB801 are with Package B.
- Dimensions and weight shown on Models TWB1001 and larger are with Package F.
- Pressure relief valve variance +/- 10%.

Correction Factors

To obtain dryer capacity at new conditions, multiply nominal capacity x C1 x C2.

Temperature Correction Factor CFT

<table>
<thead>
<tr>
<th>Maximum Inlet Temperature (°F)</th>
<th>Temperature Correction Factor CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1.17</td>
</tr>
<tr>
<td>85</td>
<td>1.17</td>
</tr>
<tr>
<td>90</td>
<td>1.17</td>
</tr>
<tr>
<td>95</td>
<td>1.17</td>
</tr>
<tr>
<td>100</td>
<td>1.17</td>
</tr>
<tr>
<td>105</td>
<td>1.17</td>
</tr>
<tr>
<td>110</td>
<td>1.17</td>
</tr>
<tr>
<td>115</td>
<td>1.17</td>
</tr>
<tr>
<td>120</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Pressure Correction Factor CFP

<table>
<thead>
<tr>
<th>Minimum Inlet Pressure (psig)</th>
<th>Pressure Correction Factor CFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.83</td>
</tr>
<tr>
<td>85</td>
<td>0.87</td>
</tr>
<tr>
<td>90</td>
<td>0.91</td>
</tr>
<tr>
<td>95</td>
<td>0.96</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>105</td>
<td>1.04</td>
</tr>
<tr>
<td>110</td>
<td>1.09</td>
</tr>
<tr>
<td>115</td>
<td>1.13</td>
</tr>
<tr>
<td>120</td>
<td>1.17</td>
</tr>
<tr>
<td>125</td>
<td>1.22</td>
</tr>
<tr>
<td>130</td>
<td>1.26</td>
</tr>
<tr>
<td>135</td>
<td>1.31</td>
</tr>
</tbody>
</table>

TWB Product Selection

TWB2001 - TWB1501
- Flow Rate: 200 - 1500 cfm
- Dewpoint: -40°F (-40°C) Standard
- Pressure Relief Valve: 150 psig (10.3 barg)
- Max Operating Pressure: 150 psig (10.3 barg)
- Min Operating Pressure: 100 psig (6.9 barg)
- Max Inlet Temp: 120°F (49°C)
- Min Inlet Temp: 10°F (10°C)
- Standard Electrical Supply: 460V/3Ph/60Hz (575V/3Ph/60Hz Optional)

TWB2001 - TWB9001
- Flow Rate: 2000 - 7500 cfm
- Dewpoint: -40°F (-40°C) Standard
- Pressure Relief Valve: 150 psig (10.3 barg)
- Max Operating Pressure: 150 psig (10.3 barg)
- Min Operating Pressure: 100 psig (6.9 barg)
- Max Inlet Temp: 120°F (49°C)
- Min Inlet Temp: 10°F (10°C)
- Standard Electrical Supply: 460V/3Ph/60Hz (575V/3Ph/60Hz Optional)
Worldwide Filtration Manufacturing Locations

North America

Compressed Air Treatment

Industrial Gas Filtration and Generation Division
Lancaster, NY
716 686 6400
www.parker.com/igfg

Haverhill, MA
978 858 0505
www.parker.com/igfg

Engine Filtration

Racor
Modesto, CA
209 521 7860
www.parker.com/racor

Holly Springs, MS
662 252 2656
www.parker.com/racor

Hydraulic Filtration

Hydraulic & Fuel Filtration
Metamora, OH
419 644 4311
www.parker.com/hydraulicfilter

Laval, QC Canada
450 629 9594
www.parkerfarr.com

Velcon
Colorado Springs, CO
719 531 5855
www.velcon.com

Process Filtration

domnick hunter Process Filtration Scilog
Oxnard, CA
805 604 3400
www.parker.com/processfiltration

Water Purification

Village Marine, Sea Recovery, Horizon Reverse Osmosis
Carson, CA
310 637 3400
www.parker.com/watermakers

Europe

Compressed Air Treatment

domnick hunter Filtration & Separation
Gateshead, England
+44 (0) 191 402 9000
www.parker.com/dhns

Parker Gas Separations
Etten-Leur, Netherlands
+31 76 508 5300
www.parker.com/dhns

Hiross Airetek
Essen, Germany
+49 2054 9340
www.parker.com/hzfzd

Padova, Italy
+39 049 9712 111
www.parker.com/hzfzd

Engine Filtration & Water Purification

Racor
Dewsbury, England
+44 (0) 1924 487 000
www.parker.com/rfde

Racor Research & Development
Stuttgart, Germany
+49 (0)711 7071 290-10

Hydraulic Filtration

Hydraulic Filter
Arnhem, Holland
+31 26 3760376
www.parker.com/hfde

Urjala, Finland
+358 20 753 2500

Condition Monitoring

Parker Kittiwake
West Sussex, England
+44 (0) 1903 731 470
www.kittiwake.com

Asia Pacific

Australia

Castle Hill, Australia
+61 2 9634 7777
www.parker.com/australia

China

Shanghai, China
+86 21 5031 2525
www.parker.com/china

India

Chennai, India
+91 22 4391 0700
www.parker.com/india

Japan

Tokyo, Japan
+81 45 870 1522
www.parker.com/japan

Korea

Hwaseon-City
+82 31 359 0852
www.parker.com/korea

Singapore

Jurong Town, Singapore
+65 6887 6300
www.parker.com/singapore

Thailand

Bangkok, Thailand
+66 2186 7000
www.parker.com/thailand

Latin America

Parker Comercio Ltda. Filtration Division
Sao Paulo, Brazil
+55 12 4009 3500
www.parker.com/br

Pan American Division

Miami, FL
305 470 8800
www.parker.com/panam

Africa

Aeroport Kempton Park, South Africa
+27 11 9610700
www.parker.com/africa