DRD Series
Energy Saving Cycling Refrigerated Air Dryers
(325 - 3000 scfm)
The importance of compressed air as a provider of energy for modern industrial processes is widely known. What is often overlooked however is the need to provide quality treatment for this air.

In fact, the air entering the system contains moisture which, when cooled, will turn into liquid water, causing extensive damage not only to the compressed air network, but also to the finished product.

These costly contamination problems can be avoided by installing a DRD Series refrigerated dryer (ranging from 325 - 3000 scfm) package complete with Parker high efficiency filtration.

Our SmartPack 4-in-1 heat exchanger offers minimal pressure drops and class leading performance, and significantly increases the efficiency of the whole compressed air treatment process. The innovative SmartControl function automatically and continuously adjusts dryer operation to the effective working conditions, minimizing operating costs and maximizing performances.

Compressed air purification equipment must deliver uncompromising performance and reliability while providing the right balance of air quality with the lowest cost of operation. Many manufacturers offer products for the filtration and purification of contaminated compressed air, which are often selected only upon their initial purchase cost, with little or no regard for the air quality they provide, the cost of operation throughout their life or their environmental impact. When purchasing purification equipment, delivered air quality, the overall cost of ownership and the equipment’s environmental impact must always be considered.

Benefits

- Optimum dewpoint levels for highest system performance
- Advanced patented design solutions
- Unique 4-in-1 SmartPack heat exchanger
- High reliability, easy to use and maintain
- Environmental, lowest real operating costs
- Dual mode integrated energy saving no loss level drain with back up timer drain with alarm
- Extremely low pressure drop design
- Crankcase heater
- SmartControl energy saving function
- Advanced scroll compressor with Phase Monitor (400 scfm and up)
- Oversized condenser to operate in ambient to 122°F (50°C) with pre-filter
- 3rd party performance verified by CAGI
- ETL listed CRN registered complete unit (except Alberta)
- Dryers manufactured in facility certified to ISO9001, ISO14001, and ISO18001

The Compressed Air & Gas Institute (CAGI) provides 3rd party performance verification for stand alone refrigerated air dryers with flows from 325 - 1000 scfm. This is a public representation that the stated Air Flow Capacities and Efficiencies have been verified by an independent laboratory. Participation in the program is voluntary and open to all manufacturers, whether they are a member of CAGI or not. Parker’s DRD Series Models DRD325 - DRD1000 dryers have been tested and verified performance information published on the standard CAGI Data Sheets (found on www.parker.com/faf). The data sheets define operational and performance information used during the specification and application decision making process. The test method used is derived from Air Dryers - ISO 7183 - Compressed Air Dryers - Specifications and Testing and Performance Rating. By choosing Parker, rest assured that your dryer has been 3rd party tested and validated and is ready to perform exactly as stated.
Energy efficient and environmentally sound

DRD Series Series dryers are designed not only to minimize the use of compressed air and electricity in their operation, but also to significantly reduce the operational costs of the compressor by minimizing pressure loss.

Minimal Direct Energy Costs

The SmartSave control automatically and precisely adjusts energy consumption in response to actual operating conditions (air variability and seasonal changes), avoiding unnecessary waste. SmartControl controls the dryer operation via multiple sensors guaranteeing maximum savings and avoiding dewpoint surges. SmartPack’s all-in-one design and thermal insulation further enhance the overall energy-savings.

Lowest Full-load Power Consumption

Parker DRD Series Series is the most energy efficient air dryer on the market, under all operating conditions. DRD Series leads the market with the lowest full-load power consumption due to its oversized heat exchanger, compliant scroll compressors, R407C environmentally friendly refrigerant and direct operation, avoiding the increased energy consumption of thermal mass-type dryers. Parker’s DRD Series consumes less energy at full load and saves more energy at partial loads. Electrical consumption usually accounts for around 50% of the air dryer’s total cost over a five-year period.

Reduced Indirect Costs

Electricity required by the compressor to compensate for pressure drops in the air dryer accounts for around 25% of its total cost over 5 years. Parker’s DRD Series offers average pressure drops which are about one half those of conventional systems. The air compressor requires additional energy to offset the drop in compressed air pressure caused by traditional condensate drains. Zero air loss drains automatically adjust drainage patterns to avoid compressed air loss thereby saving energy.

Lowest Differential Pressure

Parker DRD Series refrigerated dryers have an average of 2.0 psid versus the industry average of 5.0 psid.

Example: 500 scfm dryer operating, 8760 hours per year

<table>
<thead>
<tr>
<th>Cost of Power</th>
<th>Savings Realized</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.05 per KW =</td>
<td>$546 per year</td>
</tr>
<tr>
<td>$0.10 per KW =</td>
<td>$1091 per year</td>
</tr>
<tr>
<td>$0.15 per KW =</td>
<td>$1638 per year</td>
</tr>
</tbody>
</table>

Reduced CO₂ Emissions

Many countries worldwide are looking closely at their manufacturing industries in an effort to reduce the amount of harmful greenhouse gases released into the atmosphere. The use of electricity has a direct impact on the generation and release of CO₂. By significantly reducing the energy consumption of its products, Parker can help you reduce your carbon footprint and protect the environment.

Environmentally Friendly

Montreal Protocol compliant R407C refrigerant allows for zero ozone depletion, low global warming potential and low refrigerant charge.
SmartPack Heat Exchanger provides less than 2 psi pressure drop

The patented SmartPack heat exchanger features an extremely robust, all-in-one aluminum design, with no interconnecting tubing. The flow path of the heat exchanger has been designed in order to optimize its performances. In particular, large volumes allow low air velocity through the heat exchanger section, resulting in high exchange efficiency and low pressure drops. Pressure drops are further improved thanks to the absence of interconnecting pipes through the different sections of the heat exchanger and to a straight forward path of the compressed air flow with smooth and minimum changes of flow directions.

Optional Smart BMS Interface (DRD325 - DRD3000)

Simple BMS interface includes:
- RS485 serial card provides direct communication to Modbus.
- Requires no gateway or A.N.I.
- Provides visualization of dewpoint, alarm conditions and service indication.
- Provides remote control of the dryer including on/off and alarm reset (depending on actual alarm)

Dual Mode Zero Air Loss Drain (DRD325 - DRD3000)

The drainage chamber is integrated into the heat exchanger while the valve mechanism is fitted in an easily accessible drain niche. The Zero Air Loss Drain continuously adjusts itself to the actual working conditions, ensuring zero air loss and a notable reduction in system power consumption. An innovative control system continuously monitors for fault situations. If a fault does occur, an alarm is signaled and the drain switches to conventional timed solenoid drain operation. The dual mode circuitry ensures maximum reliability.

SmartControl with SmartSave Cycling

The multifunction SmartControl provides a versatile platform for user interface and SmartSave Cycling (if enabled). The innovative SmartSave Cycling Control continuously monitors the demand placed on the dryer. At conditions of low demand the refrigerant compressor is cycled off to save energy. A sophisticated algorithm continuously adapts the operation of the dryer for optimum energy efficiency while minimizing the dewpoint spikes common to traditional thermal mass dryers.

Advanced Scroll Compressors (400 scfm and up)

Parker domnick hunter’s DRD Series Series features advanced scroll compressors, offering energy savings of 20% when compared with piston compressors. The ability to tolerate liquid returns coupled with 50% less moving parts render them nearly indestructible and highly reliable. Low vibration levels increase overall refrigeration circuit longevity.
Compressed air and gas lines typically contain water, oil, and particulate contamination

The contaminants of greatest concern in precision compressed air systems are water, oil, and solids.

Water vapor is present in all compressed air and it becomes greatly concentrated by the compression process. While air dryer systems can be used effectively to remove water from compressed air, they will not remove oil, which is the second major liquid contaminant.

Most oil comes from compressor lubrication carry-over, but even the air produced by oil-free compressors has hydrocarbon contamination brought into the system through the intake.

The third contaminant is solid matter including dirt, rust, and scale. Solid particulates, combined with aerosols of water and oil, can clog and shorten the life of air system components and can foul processes.

International Standard ISO8573-1 has become the industry standard method for specifying compressed air cleanliness.

<table>
<thead>
<tr>
<th>ISO8573-1:2010 CLASS</th>
<th>Solid Particulate</th>
<th>Water</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum number of particles per m³</td>
<td>Mass Concentration ppm</td>
<td>Vapor Pressure Dewpoint</td>
</tr>
<tr>
<td></td>
<td>0.1 - 0.5 micron</td>
<td>0.5 - 1 micron</td>
<td>1 - 5 micron</td>
</tr>
<tr>
<td>0</td>
<td>As specified by the equipment user or supplier and more stringent than Class 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>≤ 20,000</td>
<td>≤ 400</td>
<td>≤ 10</td>
</tr>
<tr>
<td>2</td>
<td>≤ 400,000</td>
<td>≤ 6,000</td>
<td>≤ 100</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>≤ 90,000</td>
<td>≤ 1,000</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>≤ 10,000</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>≤ 100,000</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Add to your savings with Parker Filtration

Any restriction to airflow within a filter housing and element will reduce the system pressure. To generate compressed air, large amounts of electrical energy are consumed, therefore any pressure lost within the system can be directly converted into a cost for wasted energy. The higher the pressure loss, the higher the energy costs. In order to build upon the low pressure drop of DRD Series, not just any compressed air filter will do.

Parker High Efficiency Filtration

- Elements utilize low turbulence flow design
- Epoxy saturated borosilicate glass nanofiber media with outer synthetic fabric dryer layer allowing swift removal of coalesced liquids
- Differential pressure gauge and auto drain
- Durable aluminum chromated heads and bowls with powder coated finish
- Large sump capacity to handle condensate
- Simple installation and easy maintenance
Product Selection

<table>
<thead>
<tr>
<th>Model</th>
<th>Air In/Out</th>
<th>Nominal Capacity (scfm)¹</th>
<th>Dimensions ins (mm)</th>
<th>Weight</th>
<th>Filtration²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRD200-A230160-*³</td>
<td>1 1/2” NPT-F</td>
<td>200</td>
<td>38.3 (972)</td>
<td>22.1 (562)</td>
<td>183</td>
</tr>
<tr>
<td>DRD250-**</td>
<td>1 1/2” NPT-F</td>
<td>250</td>
<td>41.9 (1064)</td>
<td>27.8 (709)</td>
<td>227</td>
</tr>
<tr>
<td>DRD325-**</td>
<td>2” NPT-F</td>
<td>325</td>
<td>41.9 (1064)</td>
<td>27.8 (709)</td>
<td>320</td>
</tr>
<tr>
<td>DRD400-**</td>
<td>2” NPT-F</td>
<td>400</td>
<td>41.9 (1064)</td>
<td>27.8 (709)</td>
<td>320</td>
</tr>
<tr>
<td>DRD500-**</td>
<td>2” NPT-F</td>
<td>500</td>
<td>41.9 (1064)</td>
<td>27.8 (709)</td>
<td>342</td>
</tr>
<tr>
<td>DRD700-**</td>
<td>3” NPT-M</td>
<td>700</td>
<td>52.0 (1316)</td>
<td>31.7 (809)</td>
<td>529</td>
</tr>
<tr>
<td>DRD800-**</td>
<td>3” NPT-M</td>
<td>800</td>
<td>52.0 (1316)</td>
<td>31.7 (809)</td>
<td>529</td>
</tr>
<tr>
<td>DRD1000-**</td>
<td>3” NPT-M</td>
<td>1000</td>
<td>52.0 (1316)</td>
<td>31.7 (809)</td>
<td>551</td>
</tr>
<tr>
<td>DRD1200-**</td>
<td>3” NPT-M</td>
<td>1200</td>
<td>66.5 (1690)</td>
<td>43.2 (1097)</td>
<td>816</td>
</tr>
<tr>
<td>DRD1600-**</td>
<td>4” Flg</td>
<td>1600</td>
<td>67.8 (1722)</td>
<td>39.7 (1007)</td>
<td>1279</td>
</tr>
<tr>
<td>DRD2000-**</td>
<td>6” Flg</td>
<td>2000</td>
<td>67.8 (1722)</td>
<td>39.7 (1007)</td>
<td>1477</td>
</tr>
<tr>
<td>DRD2400-**</td>
<td>6” Flg</td>
<td>2400</td>
<td>67.8 (1722)</td>
<td>39.7 (1007)</td>
<td>1521</td>
</tr>
<tr>
<td>DRD3000-**</td>
<td>6” Flg</td>
<td>3000</td>
<td>81.0 (2048)</td>
<td>39.7 (1007)</td>
<td>1609</td>
</tr>
</tbody>
</table>

Notes:
1. Flowrates at the following climatic conditions - Ambient Temperature: 100°F (38°C), Inlet Temperature: 100°F (38°C), Inlet Pressure: 100 psi g (7 bar g).
2. Filter packages recommended based on flowrates not connection size.
3. High efficiency Parker pre-filter recommended on all models.

Technical Data

<table>
<thead>
<tr>
<th>Models</th>
<th>Max Ambient Temperature</th>
<th>Max Inlet Temperature</th>
<th>Min Ambient Temperature</th>
<th>Max Inlet Pressure</th>
<th>Refrigerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRD325-DRD3000</td>
<td>122°F (50°C)</td>
<td>149°F (65°C)</td>
<td>41°F (5°C)</td>
<td>203 psi g (14 bar g)</td>
<td>R407c</td>
</tr>
</tbody>
</table>

Correction Factors

To obtain dryer capacity at new conditions, multiply nominal capacity x C1 x C2 x C3.

<table>
<thead>
<tr>
<th>Ambient Temperature (C1)</th>
<th>°F</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>122</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td></td>
<td>21</td>
<td>27</td>
<td>32</td>
<td>38</td>
<td>43</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td>1.22</td>
<td>1.15</td>
<td>1.05</td>
<td>1</td>
<td>0.94</td>
<td>0.79</td>
<td>0.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inlet Temperature (C2)</th>
<th>°F</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td></td>
<td>32</td>
<td>38</td>
<td>43</td>
<td>49</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td>1.22</td>
<td>1.08</td>
<td>0.82</td>
<td>0.68</td>
<td>0.56</td>
<td>0.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Working Pressure (C3)</th>
<th>psi</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>174</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar g</td>
<td></td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>CFPP</td>
<td></td>
<td>0.83</td>
<td>0.93</td>
<td>1</td>
<td>1.07</td>
<td>1.12</td>
<td>1.15</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Notes:
1. Models DRD325 - DRD3000 include the following equipment as standard:
 - multi-functional control panel
 - continuous separation cross-flow heat exchanger (patent pending)
 - zero air loss condensate removal system with adjustable set points
 - dryer cycling control (patent pending)
 - on/off switch with integrated disconnect switch
 - compliant scroll compressor (DRD250 and above)
2. ED3007 Zero Air Loss Drain optional on filters for DRD325 - DRD500.
 ED3100 Zero Air Loss Drain optional on filters for DRD2400 - DRD3000.
3. For reliable operation and to meet warranty conditions, a pre-filter must be installed.

Replacement Elements

<table>
<thead>
<tr>
<th>Model</th>
<th>Pre-Filter Element</th>
<th>After-Filter Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRD325-**</td>
<td>JD0340H-7CPK</td>
<td>JD0320H-6CK</td>
</tr>
<tr>
<td>DRD400-**</td>
<td>JD0465H-7CPK</td>
<td>JD0430H-6CY</td>
</tr>
<tr>
<td>DRD500-**</td>
<td>JD0900J-7CPY</td>
<td>JD0650J-6CY</td>
</tr>
<tr>
<td>DRD700-**</td>
<td>JD1300K-7CPY</td>
<td>JD0900K-6CY</td>
</tr>
<tr>
<td>DRD1000-**</td>
<td>JD1300K-7CPY</td>
<td>HF3-801-6CU-DG</td>
</tr>
<tr>
<td>DRD1200-**</td>
<td>JD1300K-7CPK</td>
<td>HF3-801-6CU-DG</td>
</tr>
<tr>
<td>DRD1600-**</td>
<td>FF4-1201-7CVP-DG</td>
<td>FF4-1201-6CU-DG</td>
</tr>
<tr>
<td>DRD2000-**</td>
<td>FF6-1201-7CVP-DG</td>
<td>FF6-1201-6CU-DG</td>
</tr>
<tr>
<td>DRD2400-**</td>
<td>FF6-1201-7CVP-DG</td>
<td>FF6-1201-6CU-DG</td>
</tr>
<tr>
<td>DRD3000-**</td>
<td>FF6-1201-7CVP-DG</td>
<td>FF6-1201-6CU-DG</td>
</tr>
</tbody>
</table>

Note: Filters supplied loose.
Filter packages recommended based on flowrates not connection size.
N/A = Not Available
Replacement element kits include: replacement element, head-to-bowl o-ring, and lube
Aftermarket

Compressed air equipment users demand much more than the supply of high quality products in order to maintain a competitive edge.

Modern production technology is increasingly demanding the provision of a higher purity and more reliable compressed air supply. Products and solutions that are manufactured by Parker domnick hunter are designed to provide air quality that meets and often exceeds international standards.

As well as the requirement for air purity and reliability, there are additional factors to consider when choosing the right service provider for your compressed air and gas purification system. For example, knowledge of the many regulations regarding the management of industrial waste, energy efficiency improvement programs and consideration of any environmental impact. It is anticipated that future legislations will demand further in-depth technical and knowledge-based support from service providers.

Our commitment to industry does not stop with the supply of high quality products. We are also committed to ensuring that our equipment provides high performance by providing a trouble-free service from a bespoke maintenance and verification package – all tailored to your own specific requirements.

We offer a wide range of valuable services that will impact positively on your drive towards improved production efficiency and product quality with reduced production rejections and operational costs.

From initial selection to installation, commissioning, preventative maintenance and specialized services, Parker domnick hunter is redefining customer service.

<table>
<thead>
<tr>
<th>Filter Elements and Consumable Parts</th>
<th>Maintenance, Repair and Overhaul</th>
<th>Customer Support</th>
<th>Specialized Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventative Maintenance Kits Repair Kits Installation Kits Upgrade Kits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worldwide Filtration Manufacturing Locations

North America

Compressed Air Treatment

Gas Separation & Filtration Division

Airtek/Finite/donnick hunter/Zander

Lancaster, NY
716 686 6400
www.parker.com/faf

Balston

Haverhill, MA
978 858 0505
www.parker.com/balston

Engine Filtration

Racor

Modesto, CA
209 521 7860
www.parker.com/racor

Holly Springs, MS
662 252 2656
www.parker.com/racor

Hydraulic Filtration

Hydraulic & Fuel Filtration

Metamora, OH
419 644 4311
www.parker.com/hydraulicfilter

Laval, QC Canada
450 629 9594
www.parkerfarr.com

Velcon

Colorado Springs, CO
719 531 5855
www.velcon.com

Process Filtration

domnick hunter Process Filtration

SciLog

Oxnard, CA
805 604 3400
www.parker.com/processfiltration

Water Purification

Village Marine, Sea Recovery, Horizon Reverse Osmosis

Carson, CA
310 637 3400
www.parker.com/watermakers

Europe

Compressed Air Treatment

donnick hunter Filtration & Separation

Gateshead, England
+44 (0) 191 402 9000
www.parker.com/dhfns

Parker Gas Separations

Etten-Leur, Netherlands
+31 76 508 5300
www.parker.com/dhfns

Hiross Zander

Essen, Germany
+49 2054 9340
www.parker.com/hzfd

Padova, Italy
+39 049 9712 111
www.parker.com/hzfd

Engine Filtration & Water Purification

Racor

Dewsbury, England
+44 (0) 1924 487 000
www.parker.com/ride

Racor Research & Development

Stuttgart, Germany
+49 (0)711 7071 290-10

Hydraulic Filtration

Hydraulic Filter

Arnhem, Holland
+31 26 3760376
www.parker.com/hfde

Urpala, Finland
+358 20 753 2500

Condition Monitoring

Parker Kittiwake

West Sussex, England
+44 (0) 1903 731 470
www.kittiwake.com

Process Filtration

donnick hunter Process Filtration

Parker Twin Filter BV

Birtley, England
+44 (0) 191 410 5121
www.parker.com/processfiltration

Asia Pacific

Australia

Castle Hill, Australia
+61 2 9634 7777
www.parker.com/australia

China

Shanghai, China
+86 21 5031 2525
www.parker.com/china

India

Chennai, India
+91 22 4391 0700
www.parker.com/india

Parker Fowler

Bangalore, India
+91 80 2783 6794
www.johnfowlerindia.com

Japan

Tokyo, Japan
+81 45 870 1522
www.parker.com/japan

Korea

Hwaseon-City
+82 31 359 0852
www.parker.com/korea

Singapore

Jurong Town, Singapore
+65 6887 6300
www.parker.com/singapore

Thailand

Bangkok, Thailand
+66 2186 7000
www.parker.com/thailand

Latin America

Parker Comercio Ltda. Filtration Division

Sao Paulo, Brazil
+55 12 4009 3500
www.parker.com/br

Pan American Division

Miami, FL
305 470 8800
www.parker.com/panam

Africa

Aeroport Kempton Park, South Africa
+27 11 9610700
www.parker.com/africa

© 2016 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies.