Shielding Effectiveness Measurements on Various Conductive Elastomer Gaskets in Aluminum Flanges Subjected to SO₂ Salt Fog

Prepared By: David C. Inman
Test Service Technical Manager
&
Robert Foster
EMI Engineer

Chomerics, div. of Parker Hannifin / 77 Dragon Ct. / Woburn, MA 01888 / (1) 781 935 4850
Parker Hannifin PLC / Chomerics Europe / Parkway, Globe Park Estate /
Marlow, Bucks, England SL7 1YB / (44) 1628 404000
1 SUMMARY

This test was performed to measure shielding effectiveness of Chomerics and other manufacturers conductive gasket aluminum flange systems before and after S02 salt fog exposure. Radiated methods in accordance with MIL-STD-285.

Silicone and fluorosilicone elastomers filled with silver-plated aluminum, nickel fibers and nickel-coated graphite were tested. The smallest degradation in shielding effectiveness was exhibited by CHO-SEAL 1298 material. The nickel fiber and 80 wt% nickel-coated graphite filled materials exhibited the largest degradation in shielding effectiveness.

2 APPLICABLE DOCUMENTS

ASTM Standards

ASTM G85: Modified method of salt spray (fog) testing

Military Standards

MIL-C-5541E: Chemical conversion coatings on aluminum and aluminum alloys.

MIL-G-835288: Gasketing material, conductive shielding gasket, electronic, elastomer, EMI/RFI general specifications for.

3 INTRODUCTION

The purpose of this test was to measure the radiated electric field and plane wave attenuation levels of 6 test sets comprised of different EMI gasket materials before and after environmental exposure. The environmental exposure consisted of 192 hours of S0₂ Salt Fog.

This test effort was performed jointly by Chomerics' R&D department, Applications Lab and Radiation Test Services.

A separate report on the post-test material properties has been issued by Chomerics R&D department.

The tests were performed in accordance with Chomerics Test Method CHO-TM200 dated
August 1992, entitled “Shielding
Effectiveness Measurements of EMI
Gaskets Subjected to Salt Fog Exposure
(8.5” x 8.5” Aperture)

TEST SETS, TEST PANEL, AND GASKET
PREPARATION

Test Plates
Three test plates were required to perform the
tests. The three plates were as follows:

Enclosure Adapter Plate
The enclosure adapter plate, illustrated in Figure 1, matches the test
aperture and bolt pattern on Chomerics’
shielded enclosure (test chamber). The outer
bolt pattern matches to the bolt pattern on the
shielded enclosure wall. The inner bolt
pattern matches to the plate ‘sets’ which
make up the test samples. The enclosure
adapter plate is .5 inch (12.7mm) thick
T6061-T6 aluminum, and chromate
conversion coated per MIL-C-5541 Class 3.
Only one enclosure adapter plate was
required.

Adapter Test Plate
The adapter test plate, illustrated in Figure 2, is one half of the
test plate "set". The outer bolt pattern matches the
inner bolt pattern on the enclosure adapter plate
described above. The inner bolt pattern matches the
bolt pattern on the cover test plate. The adapter test
plate is .125 inch (3.175mm) thick T6061-T6
coated per MIL-C-5541 Class 3. Six adapter test
plates were required.

Cover Test Plate
The cover test plate, illustrated in Figure 3 is
the other half of the test plate "set". The bolt
pattern matches to the inner bolt pattern on the adapter test plate described above. The cover test plate is .250 inch (6.35mm) thick T6061-T6 aluminum, chromate conversion coated per MIL-C-5541 Class 3. Six cover test plates were required.

The test plates were sized so that the "set" (one adapter test plate and one cover test plate) could be placed within the S02 salt fog test chamber. This allowed S02 salt fog exposure to be performed between two separate shielding effectiveness tests to determine the shielding degradation, if any, due to increasing durations of S02 salt fog exposure. In addition, this allowed the shielding tests to be performed without disassembling the test joints.

Multiple sets of test plates were prepared due to the number of gaskets evaluated.

Compressions stops utilized were nonconductive plastic "shim" material, sized to assure 10% deflection of the .062 inch (1.57mm) thick gasket material (.056" [1.42mm] after deflection).

<table>
<thead>
<tr>
<th>ELASTOMER</th>
<th>FILLER</th>
<th>BINDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO-SEAL 1298</td>
<td>Ag plated Al</td>
<td>Fluorosilicone</td>
</tr>
<tr>
<td>Sample P</td>
<td>Nickel</td>
<td>Silicone</td>
</tr>
<tr>
<td>Sample J</td>
<td>Ag plated Al</td>
<td>Fluorosilicone</td>
</tr>
<tr>
<td>Sample S</td>
<td>Ag plated Al</td>
<td>Fluorosilicone</td>
</tr>
<tr>
<td>3558-76-1</td>
<td>60% Ni/Gr</td>
<td>Fluorosilicone</td>
</tr>
<tr>
<td>3558-76-2</td>
<td>80% Ni/Gr</td>
<td>Fluorosilicone</td>
</tr>
</tbody>
</table>

Table 1 Conductive Elastomers Tested

The complete test plate set assembly is illustrated in Figure 4.

Test Panel & Gasket Preparation

All of the test panels had a MIL-C-5541 Class 3 chromate conversion coating.

The gaskets are listed in Table 1.

Assembly of the test plate sets was accomplished after gasket fabrication. The
adapter test plate, cover test plate, gasket and compression stops were assembled using 10-24 bolts, as illustrated on Figure 4.

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett Packard Signal Generator</td>
<td>8672A</td>
<td>2GHz - 18GHz</td>
</tr>
<tr>
<td>ENI Amplifier</td>
<td>600L</td>
<td>0.8MHz - 1GHz</td>
</tr>
<tr>
<td>EMCO Biconical Antenna</td>
<td>3109</td>
<td>30MHz - 300MHz</td>
</tr>
<tr>
<td>EMCO Ridge Guide Antenna</td>
<td>3105</td>
<td>1GHz - 10GHz</td>
</tr>
<tr>
<td>Singer Log Spiral Antenna</td>
<td>CLS-105A</td>
<td>300MHz - 1GHz</td>
</tr>
<tr>
<td>Tektronix Analyzer</td>
<td>496</td>
<td>1kHz - 1.5GHz</td>
</tr>
<tr>
<td>Hewlett Packard Spectrum Analyzer</td>
<td>8559A</td>
<td>0.1GHz - 21GHz</td>
</tr>
<tr>
<td>Logimetrics Amplifier A300/L</td>
<td>1GHz - 2GHz</td>
<td></td>
</tr>
<tr>
<td>Logimetrics Amplifier A300/S-08</td>
<td>2GHz - 4GHz</td>
<td></td>
</tr>
<tr>
<td>Logimetrics Amplifier A300/C-08</td>
<td>4GHz - 8GHz</td>
<td></td>
</tr>
<tr>
<td>Logimetrics Amplifier 300/XU</td>
<td>8GHz - 18GHz</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Test Equipment Used

5 SHIELDING TESTS

The shielding tests were performed at Chomerics Inc., Woburn, Massachusetts, per the requirements of MIL-STD-285 as described within this document and within Chomerics Test Method, No. CHO-TM200.

Shielded Enclosure

The 12' x 8' x 16' shielded enclosure was manufactured by Sprague Shielding Corporation. Attenuation tests have demonstrated that the shielded enclosure meets the attenuation requirements of MIL-STD-285 and NSA 65-6. The enclosure is constructed of .250 inch (6.35mm) solid steel plate, continuously seam welded.

The available AC power within the shielded enclosure is 110V AC, 220V A single and three phase, 60 cycle. The power line filter are rated for 100dB c attenuation from 10kHz to 10GHz.

Mounting of Test Sets

The enclosure adapter plate and test sets were mounted on the wall of the shielded enclosure, with BeCu fingerstock material between the wall of the room and the adapter plate. The seam was additionally bridged with copper tape. The 1/4-20 bolts used to connect the adapter plate to the shielded enclosure wall were torqued to
approximately 75 in-lbs without stripping.

Test Equipment

Table 2 is a list of the equipment used to perform the radiated electric field and plane wave tests:

The equipment used to perform this test is calibrated per MILSTD-45662 at least once per year, and was in calibration at the time of the test.

6 MEASUREMENT PROCEDURES

This test was configured as defined within Chomerics' shielding effectiveness test method CHO-TM200. The transmitting antennas and the RF amplifiers were placed inside the shielded room. The receiving antennas, signal generators, and spectrum analyzers were placed outside the shielded enclosure. The spectrum analyzers and signal generator were placed 10 feet away from each other to achieve isolation between the transmit and receive test equipment.

The test was performed at frequencies of 2GHz, 3GHz, 4GHz, 5GHz, 6GHz, 7GHz, 8GHz, 9GHz and 10GHz.

Antenna orientation was vertical for all frequencies.

Figures 5 and 6 illustrate the shielded enclosure and test setup.

The transmitting and receiving antenna were placed two feet apart plus the width of the test panel in accordance with MIL-STD-285.

<table>
<thead>
<tr>
<th>ELASTOMER</th>
<th>INITIAL VOLUME RESISTIVITY (OHM-CM)</th>
<th>FINAL VOLUME RESISTIVITY (OHM-CM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO-SEAL 1298</td>
<td>0.008</td>
<td>0.007 - 0.014</td>
</tr>
<tr>
<td>Sample P</td>
<td>0.011</td>
<td>0.021 - 0.357</td>
</tr>
<tr>
<td>Sample J</td>
<td>0.005</td>
<td>0.003 - 0.012</td>
</tr>
<tr>
<td>Sample S</td>
<td>0.006</td>
<td>0.005 - 0.025</td>
</tr>
<tr>
<td>3558-76-1</td>
<td>0.081</td>
<td>0.073 - 0.253</td>
</tr>
<tr>
<td>3558-76-2</td>
<td>0.033</td>
<td>0.085 - 0.372</td>
</tr>
</tbody>
</table>

Table 3 DC Volume Resistivity After SO₂ Salt Fog open reference was taken in free space outside the shielded enclosure. The test measurement were taken with the transmitting antenna place inside the shielded enclosure and the receiving antenna placed outside the shielded enclosure.
on opposite sides of the test panel. Both the transmitting and receiving antennas were placed one foot from the test panel.

Additional details of these measurement procedures and setup illustrations can be found in Chomerics Test Method No. CHO-TM200.

The shielding effectiveness (SE) was determined by taking the power level recorded during the open reference measurement and subtracting from the power level recorded with the test set in place. Below is a sample calculation:

\[
\text{Open Reference} - \text{Test Measurement} = \text{SE} \\
-10 \text{ dBm} - (-107 \text{ dBm}) = 97 \text{ dB}
\]

DC volume resistivity of the EMI gaskets was made using the surface probe method of MIL-G-835286, Para 4.6.11. Measurements were taken before and after 192 hours of S02 salt fog exposure. The results are recorded in Table 3.

7 CONCLUSIONS

From the data taken during this evaluation, three conclusions can be drawn.

Chomerics' CHO-SEAL 1298 gasket demonstrated the best shielding effectiveness both before and after S02 salt fog exposure, and the least amount of degradation after salt fog exposure. Shielding effectiveness values were greater than 85dB, from 2GHz to 10GHz, even after S02 salt fog exposure. (Refer to Graph 1).

The nickel filled (sample P, Graph 2) and nickel-coated graphite filled gaskets demonstrated the poorest shielding effectiveness and the most severe degradation after salt fog exposure. Shielding effectiveness values were 60-80dB from 2GHz to 10GHz after S02 salt fog exposure.

The silver-plated-aluminum filled fluorosilicone gaskets, sample J (Graph 3) and sample S (Graph 4) both degraded about 15 - 20dB after S02 salt fog exposure, with shielding effectiveness values of only 60-80dB after salt fog exposure.

Chomerics NB #3558-76-1, 60% Ni/Gr gasket material: shielding effectiveness test day after S02 environmental exposure indicated a reduction in shielding performance of approximately 18dB. (Graph 5)

Chomerics NB #3558-76-2, 80% Ni/Gr gasket material: shielding effectiveness test data after S02 environmental exposure indicated a reduction in shielding performance approximately 30dB. (Refer to Graph 6)
Graph 1: Shielding Effectiveness of CHC-SEAL 1298 Gasket Before and After SO$_2$ Salt Fog Exposure

Graph 2: Shielding Effectiveness of Competitor P’s Gasket Before and After SO$_2$ Salt Fog Exposure
Graph 3 Shielding Effectiveness of Competitor J’s Gasket Before and After SO2 Salt Fog Exposure

Graph 4 Shielding Effectiveness of Competitor S’s Gasket Before and After SO2 Salt Fog Exposure
Graph 5 Shielding Effectiveness of 3558-76-1 60% Ni/Gr Gasket Before and After SO₂ Salt Fog Exposure

Graph 6 Shielding Effectiveness of 3558-76-2 80% Ni/Gr Gasket Before and After SO₂ Salt Fog Exposure