PCL4
Remote Control
Hydraulic Proportional Remote Control Valve
Catalogue layout

This catalogue has been designed to give an overview of the PCL4 series of valves and to make it easy for you to study and choose from the different valve functions available, so that we may customize your valve in accordance with your wishes. General information and technical data is given first, followed by descriptions of the various options that can be specified and, finally, by dimensional drawings for the respective valves.

Each function is given as a subheading, e.g. Levers, followed by a brief description. This is followed by a series of alphanumeric codes, e.g. H1, H2, E4, together with a brief description of what each code represents.

How to order your valve

The next step is to complete our so-called “Customer Specification Form”, which enables detailed specification of the optional functions and port-specific control-pressure characteristics you wish to be incorporated into your valve. However, if you require only a simple, basic valve, in which all control-pressure ports have the same configuration, you can specify your valve by determining an ordering code in accordance with the information given on page 5. It is simply a matter of entering the codes for the desired options into the boxes in the ordering code, as shown in the example.

For assistance in configuring your valve, completing the Customer Specification Form or determining the ordering code, please do not hesitate to contact your nearest Parker representative.

The information in your Customer Specification Form will be entered into our computerized valve specification program, which generates a unique ID number that will be stamped into the data plate on your valve. (If you order your valve by means of an ordering code, the code will be stamped into the data plate on your valve.) Your valve specifications will then be stored on our database to facilitate accurate identification of the product in the event of re-ordering or service-related questions.

Conversion factors

1 kg	2.2046 lb
1 N	0.22481 lbf
1 bar	14.504 psi
1 l	0.21997 UK gallon
1 l	0.26417 US gallon
1 cm³	0.061024 in³
1 m	3.2808 feet
1 mm	0.03937 in

9/5 °C + 32 = °F

Subject to alteration without prior notice. The diagrams in the catalogue show typical curves only. While the contents of the catalogue are updated continuously, the validity of the information given should always be confirmed. Technical information in the catalogue is applicable at an oil viscosity of 30 mm²/s and temperature of 50 °C. For more detailed information, please contact Parker.

!!! WARNING – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

Parker Hannifin
Mobile Controls Division Europe
Borås, Sweden
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue Information</td>
<td>2</td>
</tr>
<tr>
<td>General Information</td>
<td>4</td>
</tr>
<tr>
<td>Ordering Code</td>
<td>5</td>
</tr>
<tr>
<td>Technical Data</td>
<td>6</td>
</tr>
<tr>
<td>Lever forces</td>
<td>7</td>
</tr>
<tr>
<td>Electrical data</td>
<td>7</td>
</tr>
<tr>
<td>Connections</td>
<td>7</td>
</tr>
<tr>
<td>Weight</td>
<td>7</td>
</tr>
<tr>
<td>Valve type</td>
<td>8</td>
</tr>
<tr>
<td>Control pressure ports</td>
<td>8</td>
</tr>
<tr>
<td>Connections</td>
<td>8</td>
</tr>
<tr>
<td>Location of connections</td>
<td>8</td>
</tr>
<tr>
<td>Control pressure</td>
<td>8</td>
</tr>
<tr>
<td>Mounting plate</td>
<td>9</td>
</tr>
<tr>
<td>Extra centring springs</td>
<td>9</td>
</tr>
<tr>
<td>Lever E1</td>
<td>9</td>
</tr>
<tr>
<td>Levers E2, E3, E4</td>
<td>9</td>
</tr>
<tr>
<td>Activating devices</td>
<td>10</td>
</tr>
<tr>
<td>Lever N2T</td>
<td>10</td>
</tr>
<tr>
<td>Lever N4T</td>
<td>10</td>
</tr>
<tr>
<td>Lever detents for PCL402</td>
<td>11</td>
</tr>
<tr>
<td>Friction brake for PCL402</td>
<td>11</td>
</tr>
<tr>
<td>Shuttle valve for signal on activation of valve</td>
<td>11</td>
</tr>
<tr>
<td>PCL401 levers</td>
<td>12</td>
</tr>
<tr>
<td>Dimensional Drawings</td>
<td>12-17</td>
</tr>
</tbody>
</table>
The PCL4 is a stackable hydraulic control-pressure valve intended for the proportional, hydraulic remote control of directional valves, pumps with variable displacement, positioning cylinders, etc. It can be obtained with a co-ordinate lever (joystick), linear lever or foot pedal as the activating device.

Freedom in machine design

Good machine design is heavily dependent on the availability of versatile components and systems that can be combined in different ways to give optimum operating and control characteristics. Parker control systems give you the freedom to design your machines the way you want them, since they enable components such as directional valves and other control devices to be located ideally on the machine. This also gives advantages in production, since it greatly facilitates the building of machine sub-assemblies at different sites prior to collation for final assembly.

Parker supplies a wide range of pneumatic, hydraulic and electric control devices that enable optimum ergonomic design of the machine-control station. (Please see separate brochures for information on our hydraulic and electric remote-control systems.)

Safety

The robust and simple construction of the PCL4 remote control valve makes it very reliable and greatly facilitates training and servicing. This, together with consistently predictable control properties, gives a high level of operational safety for many years.

Design

The valve is made up of sections, each of which contains two 3-way pressure reducing valves (one per signal port). Up to 6 sections can be stacked into one and the same valve to give a total of 12 signal ports. Valves with four signal ports can be equipped with a coordinate lever (joystick). The cast-iron valve housing and reducer-valve spools of hardened, precision-ground steel ensure a long service life with minimal internal leakage. Special low-friction seals give effective protection against external leakage.

The PCL4 is designed to give minimal hysteresis and very good long-term control characteristics.

Levers are of corrosion-resistant steel and can be fitted with plastic handles, balls or window knobs. Pedals can be of corrosion-resistant, pressed steel plate, aluminium or rubber-coated steel.

Essential characteristics

- Small dimensions enable simple, compact installation.
- Robust, simple design gives great reliability and easy servicing.
- Low, well-adapted lever forces and short lever strokes give good operating comfort.
- Lever forces can be specified per control-pressure port to give function-specific actuational resistance.
- Low hysteresis gives consistent machine-function response to valve actuation.
- Good metering properties enable gentle, proportional control.
- Very wide range of control-pressure characteristics enables control of machine functions to be application-optimized.
- Wide range of control devices and accessories gives great flexibility in system design.
- Valve can be installed in arm rests of operator’s seat and fitted with site-suited lever to give very ergonomic control station.
- Quality materials and great precision in manufacturing, assembly and testing assure a quality product with low internal leakage and long service life.
- Total compatibility with Parker directional valves gives predictable and harmonious system characteristics.
How to order your valve

The best way to order your valve is to fill in one of our “Customer Specification Forms”, in which you can specify all the optional functions you wish to be incorporated into your valve. However, if you need only a simple, basic valve, in which all control-pressure ports have the same configuration, you may use an ordering code similar to the one shown above. Simply select the desired options from the tables above and enter the appropriate codes into the boxes in the ordering code above.

See pages 8 - 11 for more information about the different options available.
General
The data given is applicable at an oil temperature of 50 °C (122 °F) and viscosity of 30 mm²/s (cSt) using mineral base oil according to DIN 51524.

Pressures
Supply pressure (pump pressure) max. 100 bar (1450 psi)
Recommended supply pressure higher than max. control pressure
Control pressure max. 75 bar (1090 psi)
Breakaway pressure min. 1 bar, (14.5 psi) max. 16 bar (232 psi)
Return-line pressure max. 3 bar (44 psi)

Flow rate
Control flow max. 15 l/min (4 USgpm)

Hysteresis
Hysteresis max. 0.5 bar (7.3 psi)

Hydraulic fluids
Best performance is obtained using mineral-base oil of high quality and cleanliness in the hydraulic system.
HLP hydraulic fluids (DIN 51524), automatic-gearbox oil type A and API CD engine oils can be used.
Viscosity range 10-380 mm²/s (cSt)

Performance efficiency will be reduced if outside the ideal values. These extreme conditions must be evaluated by the user to establish suitability of the products performance.

Filtration
Filtration should be arranged so that the Target Contamination Class 18/16/13 according to ISO 4406 is not exceeded.

Technical information in this catalogue is applicable at an oil viscosity of 30 mm²/s and temperature of 50 °C using nitrile rubber seals.

Temperature
Min. ambient temperature –40 °C (-40 °F)
Max. ambient temperature +60 °C (140 °F)
Min. oil temperature –20 °C (-4 °F)
Max. oil temperature +70 °C (166 °F)
Temperature change max. 100 °C/s.
max. 212 °F/s

Product operating limits are broadly within the above range, but satisfactory operation within the specification may not be accomplished. Leakage and response will be affected when used at temperature extremes and it is up to the user to determine acceptability at these levels.

Leakage
From pump connection to tank connection with the spool in neutral position and a supply pressure of 40 bar (580 psi) max. 20 cm³/min (1.22 in³/ per control-pressure port

Warning
If the filtration demands are not met, the valve poppets can jam in the open position, with the result that the valve remains actuated. It is not possible to force back jammed poppets mechanically.
Lever forces
All lever forces stated are applicable at a control pressure of 15 bar (valve not fitted with an extra centring spring). Pedal forces are applicable when the C2 centring spring is used (see page 9).

Normal force for linear lever, fully actuated: 1.2 Nm
Normal force for coordinate lever (joystick):
 one function fully actuated: 1.8 Nm
 two functions fully actuated: 2.4 Nm
Normal force for pedal, fully actuated: 5.7 Nm

Electrical data
(applies to switch in E- and N-type levers)
The data given below is what is needed to obtain the maximum service life. The values can be exceeded with retained function, but will result in a reduction in service life.

In the event of inductive loading, a protective diode must be fitted.

Breaking capacity
DC, resistive loading: 2A/24V
DC or AC, inductive loading: 1A/24V

Connections
Three different types of connection thread are available:
G1/4 for flat seal (type Tredo) according to ISO 228/1 (G version)
9/16-18 UNF-2B (for O-ring) according to SAE J1926/1 (U version)
M14 x 1.5 (metric ISO thread) for flat seal (M version)

Weight
The weight of the unit varies with its configuration. A few examples are given below.

Valve with linear lever: approx. 1.6 kg/section
Valve with coordinate lever: approx. 3.2 kg
Valve with pedal (F): approx. 3.0 kg

Circuit diagram showing two-section PCL4 with two linear levers controlling one hydraulic directional valve containing two spool sections.

Circuit diagram showing two-section PCL4 with one coordinate lever (joystick) controlling one hydraulic directional valve containing two spool sections.
Remote Controls – Hydraulic

PCL4

Every valve is customized. The following options are used to configure a valve.

Valve type
- PCL401 Valve with coordinate lever (joystick)
- PCL402 Valve with linear lever(s) or pedal

Control pressure ports
- 2-12 4 in PCL401
- 2, 4, 6, 8, 10 or 12 in PCL402

Connections
- G Connections with G1/4 thread
- U Connections with 9/16-18 UNF-2B thread
- M Connections with M14 x 1.5 thread

Location of connections
All control-pressure ports are located on the underside of the valve. The pump and tank connections can be located on the underside or side of the valve. See dimensional drawings.
- S Pump and tank connections fitted on the side of the valve.
- B Pump and tank connections fitted on the underside of the valve.

Control pressure
Control pressure characteristics can be obtained in an almost infinite number of versions. They are classified into four different groups.
- Straight characteristic
- Straight characteristic with overtravel stroke
- Broken characteristic
- Broken characteristic with overtravel stroke

With the straight characteristic, the control pressure changes proportionally with the lever stroke. With the broken characteristic, the control pressure changes proportionally with the lever stroke up to a pre-determined breakpoint, after which the characteristic continues to change proportionally, but with a steeper characteristic. This is useful when there is a big difference between break-out pressure and final pressure and a need to fine-regulate the beginning of the stroke.

With the overtravel stroke, the control pressure becomes equal to the supply pressure. This is recommended primarily for directional valves that have a free flow gallery (CFO). The overtravel stroke serves to ensure full actuation regardless of any return-spring tolerances in the spool actuator of the directional valve.

To calculate a suitable control-pressure characteristic, the following information is needed:
- Breakout pressure: The pressure at which the valve just begins to open. Selectable between 1 and 16 bar.
- Final pressure: Max. control pressure (fully actuated activating device) or, in case of overtravel stroke, the pressure level obtained on reaching the overtravel stroke. Selectable between 5.5 and 75 bar.
- Breakpoint: The lever stroke and pressure at which the broken characteristic changes characteristic.
- Overtravel stroke: The part of the activating-device stroke that constitutes overtravel.

For assistance in calculating the most suitable control-pressure characteristic, please contact your nearest Parker representative.
Mounting plate
A number of different mounting plates for fitting the valve to the machine are available (see dimensional drawings).

- **M1**: Mounting plate for PCL401
- **M2**: Mounting plate for PCL402 with four control pressure ports
- **M3**: Mounting plate for PCL402
- **M3S**: Same as M3 but in Stainless steel
- **M4**: Mounting plate for PCL402 with two control pressure ports
- **M5**: Mounting plate for PCL402
- **M6**: Mounting plate for PCL402
- **M9G**: Mounting plate for PCL402 for Gresen replacement
- **M10C**: Mounting plate for PCL402 for Commercial replacement
- **A102**: Mounting plate for PCL401, rectangular bellows (for PCL401 with type N levers only)

Extra centring springs
Any control-pressure port can be fitted with an extra centring spring, which serves primarily to ensure centralization of the lever unit. (Heavier lever units need stronger centring springs.) Also, by fitting different springs at different ports, a coordinate lever (for instance) can be given different actuation resistances for different functions. A list of the different springs available is given in the table below, together with their respective force increases on the push rod. These force values should not be confused with the inherent lever forces, since the various activating devices have different ratios.

F1 is the force transmission on the activating device when the spool is in the neutral position.
F2 is the force transmission on a fully actuated activating device.

<table>
<thead>
<tr>
<th></th>
<th>F1 (N)</th>
<th>F2 (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>C0</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>C1</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>C5</td>
<td>35</td>
<td>71</td>
</tr>
<tr>
<td>C2</td>
<td>49</td>
<td>71</td>
</tr>
<tr>
<td>C3</td>
<td>51</td>
<td>92</td>
</tr>
<tr>
<td>C4</td>
<td>65</td>
<td>169</td>
</tr>
<tr>
<td>C6</td>
<td>100</td>
<td>214</td>
</tr>
<tr>
<td>C8</td>
<td>130</td>
<td>243</td>
</tr>
</tbody>
</table>

Levers E1, E2, E3, E4
The detent position on lever E3 results in a connection between the red and black cables.
Activating devices
Several different types of activating device are available:
- Straight lever with ball
- Straight lever with window knob for insertion of functional symbol
- Straight lever with thicker plastic handle (can be equipped with different switches)
- Ergonomic multi-function lever that can be equipped with up to 5 thumb-switches
- Pedal

See also dimensional drawings.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Coordinate lever (joystick) with ball or window knob</td>
</tr>
<tr>
<td>H3</td>
<td>Straight linear lever with ball or window knob</td>
</tr>
<tr>
<td>H3S</td>
<td>Lever H3 in stainless steel</td>
</tr>
<tr>
<td>H4-H7</td>
<td>Bent linear lever with ball or window knob</td>
</tr>
<tr>
<td>E0</td>
<td>Linear or coordinate lever without thumb switch</td>
</tr>
<tr>
<td>E1</td>
<td>Linear or coordinate lever with 2-position thumb switch</td>
</tr>
<tr>
<td>E2</td>
<td>Linear or coordinate lever with 3-position, spring-centred toggle switch</td>
</tr>
<tr>
<td>E3</td>
<td>Linear or coordinate lever with 3-position toggle switch with detent at one end position</td>
</tr>
<tr>
<td>E4</td>
<td>Linear or coordinate lever with 3-position toggle switch with detents at both end positions</td>
</tr>
<tr>
<td>N0</td>
<td>Coordinate lever without thumb switch</td>
</tr>
<tr>
<td>N2</td>
<td>Coordinate lever with 2 instantaneous switches (Nos. 1 and 2)</td>
</tr>
<tr>
<td>N2T</td>
<td>Coordinate lever with 3 instantaneous switches (Nos. 1, 2 and 5)</td>
</tr>
<tr>
<td>N4</td>
<td>Coordinate lever with 4 instantaneous switches (Nos. 1-4)</td>
</tr>
<tr>
<td>N4T</td>
<td>Coordinate lever with 5 instantaneous switches (Nos. 1-5)</td>
</tr>
<tr>
<td>F</td>
<td>Pedal of pressed steel plate</td>
</tr>
<tr>
<td>A36</td>
<td>Pedal of cast aluminium</td>
</tr>
<tr>
<td>A95</td>
<td>Pedal of rubber coated steel</td>
</tr>
</tbody>
</table>

Lever N2T
right-hand version

Lever N4T
left-hand version

Breaker symbol (colours of output cables)

<table>
<thead>
<tr>
<th>Push button</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
</tr>
<tr>
<td>3</td>
<td>Brown</td>
</tr>
<tr>
<td>4</td>
<td>Pink</td>
</tr>
<tr>
<td>5</td>
<td>Grey</td>
</tr>
<tr>
<td>6</td>
<td>Green/yellow</td>
</tr>
</tbody>
</table>
Lever detents for PCL402

Linear levers can be equipped with a detent that locks the lever in the fully actuated position (for one or both control-pressure ports).

MD2 Mechanical end-position detent. Released by pulling the lever out of its detented position. It can be used with signal pressures of up to 30 bar inclusive.
See figure on page 6.

ED2 Electric end-position detent. A solenoid locks the lever in its fully actuated position. By means of a force index, a greater resistance to lever actuation is felt by the operator just before the lever enters the detented position, i.e. after approx. 75% of the lever stroke. The lever is released from the detented position by breaking the current to the solenoid. In emergencies, the lever can be pulled out of the detented position manually. Since sections equipped with the ED2 do not have protective bellows, it is important that they are installed in the machine in such a way as to prevent the ingress of dirt (which would impair the function of the valve).
At a signal pressure of 35 bar, the holding force is min. 19 N.
Electrical data:
Solenoid voltage: 24 VDC max. 3.2 W 100% ED

Friction brake for PCL402
S2 Friction brake with centre-position indication. Movement is braked so that the lever remains in any position in which it is put. The centre position is index-marked for reliable positioning into neutral. Due to the size of friction brake, a 35 mm spacer block is fitted between the sections in valves containing more than one section.
See dimensional drawing.

Shuttle valve for signal on activation of valve
A42 PCL402 with 2 control-pressure ports, and with the pump and tank connections on the underside of the valve, can be equipped with a shuttle valve that emits a signal as soon as the valve is activated.
PCL401 levers

Lever E0 - E4

- a) Applies to max. actuation of one function
- b) Applies to max. actuation of two functions

Lever H1 with ball

- c) 210 with window knob
- d) Ø27 with window knob

Lever N0 - N4T

- Straight version
- Right-hand version and A102 mounting plate
PCL401 valve housing
PCL401 with all connections in the underside of the valve and with A102 mounting plate.

PCL401 with tank and pump connections on the side of the valve and with M1 mounting plate.
PCL402 Levers with ball

Lever H5

Ø25 (0.98)

Lever H4
mounting position 4

50 (1.97) 50 (1.97)

Lever H3

15 (0.59)

50 (1.97) 50 (1.97) 50 (1.97) 50 (1.97)

Lever H4
mounting position 2

30 (1.18)

Lever H5

45 (1.77)

Lever H6

inch

190 (7.48)

PCL402 with S2 friction brake on two sections

PCL402 with H3 lever and window knob

Spacer block

Sections with S2

70 (2.76)

83 (3.27)

25°

Ø27 (Ø1.06)

25°

200 (7.87)

1.02

25
Remote Controls – Hydraulic

PCL4

Catalogue HY17-8357/UK
Parker Hannifin
Mobile Controls Division Europe
Borås, Sweden

PCL402 Housing and mounting plates

M3 mounting plate
Valve housing with side connection of pump and tank

M2 mounting plate

M4 mounting plate

M6 mounting plate

Number of sections L mm L inch
1 35 1.38
2 70 2.76
3 105 4.13
4 140 5.51
5 175 6.89
6 210 8.27

Parker Hannifin
Mobile Controls Division Europe
Borås, Sweden
PCL402 Pedal F and M5 mounting plate
For housing dimensions, see page 15
PCL402 Pedal A95
For housing dimensions, see page 15

M10x22 screw for mounting of valve in cab

Lever fitted here (if required)

Space intended for floor mat, thickness 12-15 mm

Port B 9 (0.39) 9 (0.35) Port A

Bellows

Gas damper fitted here (if required)