Safety & Technical Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parker Safety Guide No. 4400-B.1</td>
<td>395</td>
</tr>
<tr>
<td>Critical Applications</td>
<td>398</td>
</tr>
<tr>
<td>California Proposition 65</td>
<td>403</td>
</tr>
<tr>
<td>Industry Publications</td>
<td>403</td>
</tr>
<tr>
<td>Basic Hose Constructions</td>
<td>404</td>
</tr>
<tr>
<td>Age Control</td>
<td>406</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>406</td>
</tr>
<tr>
<td>Force-to-Bend and Minimum Bend Radius</td>
<td>407</td>
</tr>
<tr>
<td>Oil and Fuel Resistance</td>
<td>407</td>
</tr>
<tr>
<td>Suction and Vacuum</td>
<td>408</td>
</tr>
<tr>
<td>Couplings – Dimensions of 150-Lb. Steel Flanges ASA</td>
<td>410</td>
</tr>
<tr>
<td>Couplings – Dimensions of 300-Lb. Steel Flanges ASA</td>
<td>410</td>
</tr>
<tr>
<td>Couplings – Thread Compatibility</td>
<td>409</td>
</tr>
</tbody>
</table>
Parker Safety Guide for Selecting and Using Hose, Tubing, Fittings and Related Accessories

Parker Publication No. 4400-B.1

WARNING: Failure or improper selection or improper use of hose, tubing, fittings, assemblies or related accessories ("Products") can cause death, personal injury and property damage. Possible consequences of failure or improper selection or improper use of these Products include but are not limited to:

• Fittings thrown off at high speed.
• High velocity fluid discharge.
• Explosion or burning of the conveyed fluid.
• Electrocutation from high voltage electric powerlines.
• Contact with suddenly moving or falling objects that are controlled by the conveyed fluid.
• Injections by high-pressure fluid discharge.

Before selecting or using any of these Products, it is important that you read and follow the instructions below. Only Hose from Parker's Stratoflex Products Division is approved for in-flight aerospace applications.

1.0 GENERAL INSTRUCTIONS

1.1 Scope: This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) these Products. For convenience, all rubber and/or thermoplastic products commonly called "hose" or "tubing" are called "Hose" in this safety guide. All assemblies made with Hose are called "Hose Assemblies". All products commonly called "fitting", "couplings" or "adapters" are called "Fittings". All related accessories (including clamping and swaging machines and tooling) are called "Related Accessories". This safety guide is a supplement to and is to be used with the specific Parker publications for the specific Hose, Fittings and Related Accessories that are being considered for use. Parker publications are available at www.parker.com, SAE J1273 (www.sae.org) and ISO 17165-2 (www.ansi.org) also provide recommended practices for hydraulic Hose Assemblies.

1.2 Fail-Safe: Hose, Hose Assemblies and Fittings can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of the Hose, Hose Assembly or Fitting will not endanger persons or property.

1.3 Distribution: Provide a copy of this safety guide to each person responsible for selecting or using Hose and Fitting products. Do not select or use Parker Hose or Fittings without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the Products.

1.4 User Responsibility: Due to the wide variety of operating conditions and applications for Hose and Fittings, Parker does not represent or warrant that any particular Hose or Fitting is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for:

• Making the final selection of the Products.
• Assuring that the user's requirements are met and that the application presents no health or safety hazards.
• Providing all appropriate health and safety warnings on the equipment on which the Products are used.
• Assuring compliance with all applicable government and industry standards.

1.5 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the Products being considered or used, or call 1-800-C PARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2.0 HOSE AND FITTINGS SELECTION INSTRUCTIONS

2.1 Electrical Conductivity: Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fittings for any such application requiring nonconductive Hose, including but not limited to applications near high voltage equipment. Use either (i) the applicable Parker technical publication for the product, (ii) the Hose is marked "nonconductive" and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose and Fittings for such use.

2.1.1 Electrically Nonconductive Hose: Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fittings for any such application requiring nonconductive Hose, including but not limited to applications near high voltage equipment. Use either (i) the applicable Parker technical publication for the product, (ii) the Hose is marked "nonconductive" and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose and Fittings for such use.

2.1.2 Electrically Conductive Hose: Parker manufactures special Hose for certain applications that require electrically conductive Hose.

Parker manufactures special Hose for conveying paint in airless paint spraying applications. This Hose is labeled "Electrically Conductive Airless Paint Spray Hose" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in all airless paint spraying applications. Do not use any other Hose for airless paint spraying, even if electrically conductive. Use of any other Hose or failure to properly connect the Hose can cause a fire or an explosion resulting in death, personal injury, and property damage.

Parker manufactures a special Hose for certain compressed natural gas ("CNG") applications where static electricity buildup may occur. Parker CNG Hose assemblies comply with the requirements of ANSI/IAS NGV 4.2-1999; CSA 12.52-M99, "Hoses for Natural Gas Vehicles and Dispensing Systems" (www.ansi.org). This Hose is labeled "Electrically Conductive for CNG Use" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in, for example, high velocity CNG dispensing or transfer. Do not use any other Hose for CNG applications where static charge buildup may occur, even if electrically conductive. Use of other Hoses in CNG applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. Care must also be taken to protect against CNG permeation through the Hose wall. See section 2.6, Permeation, for more information. Parker CNG Hose is intended for dispenser and vehicle use at a maximum temperature of 180°F (82°C). Parker CNG Hose should not be used in confined spaces or unventilated areas or areas exceeding 180°F (82°C). Final assemblies must be tested for leaks. CNG Hose Assemblies should be tested on a monthly basis for conductivity per ANSI/IAS NGV 4.2-1999; CSA 12.52-M99.

Parker manufactures special Hose for aerospace in-flight applications. Aerospace in-flight applications employing Hose to transport fuel, lubricating fluids and hydraulic fluids require a special Hose with a conductive inner tube. This Hose for in-flight applications is available only from Parker's Stratoflex Products Division. Do not use any other Parker Hose for in-flight applications, even if electrically conductive. Use of other Hoses for in-flight applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury and property damage. These Hose assemblies for in-flight applications must meet all applicable aerospace industry, aircraft engine and aircraft requirements.

Pressure: Hose selection must be made so that the published maximum working pressure of the Hose and Fittings are equal to or greater than the maximum system pressure. The maximum working pressure of a Hose Assembly is the lower of the respective published maximum working pressures of the Hose and the Fittings used. Surge pressures or peak transient pressures.
2.9 Parker Safety Guide, Parker Publication No. 4400-B.1 (Continued)

2.3 Suction: Hoses used for suction applications must be selected to insure that the Hose will withstand the vacuum and pressure of the system. Improperly selected Hose may collapse in suction application.

2.4 Temperature: Be certain that fluid and ambient temperatures, both steady and transient, do not exceed the limitations of the Hose. Temperatures below and above the recommended limit can degrade Hose to a point where a failure may occur and release fluid. Properly insulate and protect the Hose Assembly when routing near hot objects (e.g. manifolds). Do not use any Hose in any application where failure of the Hose could result in the conveyed fluids (or vapors or mist from the conveyed fluids) contacting any open flame, molten metal, or other potential fire ignition source that could cause burning or explosion of the conveyed fluids or vapors.

2.5 Fluid Compatibility: Hose Assembly selection must assure compatibility of the Hose tube, cover, reinforcement, and Fittings with the fluid media used. See the fluid compatibility chart in the Parker publication for the product being considered or used. This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis.

2.6 Permeation: Permeation (that is, seepage through the Hose) will occur from inside the Hose to outside when Hose is used with gases, liquid and gas fuels, and refrigerants (including but not limited to such materials as helium, diesel fuel, gasoline, natural gas, or LPG). This permeation may result in high concentrations of vapors which are potentially flammable, explosive, or toxic, and in loss of fluid. Dangerously, fires, fires, and other hazards can result when using the wrong Hose for such applications. The system designer must take into account the fact that this permeation will take place and must not use Hose if this permeation could be hazardous. The system designer must take into account all legal, government, insurance, or any other special regulations which govern the use of fuels and refrigerants. Never use a Hose even though the fluid compatibility is acceptable without considering the potential hazardous effects that can result from permeation through the Hose Assembly.

Permeation of moisture from outside the Hose to inside the Hose will also occur in Hose assemblies, regardless of internal pressure. If this moisture permeation would have detrimental effects (particularly, but not limited to refrigeration and air conditioning systems), incorporation of sufficient drying capacity in the system or other appropriate system safeguards should be selected and used.

2.7 Size: Transmission of power by means of pressurized fluid varies with pressure at a rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.

2.8 Routing: Attention must be given to optimum routing to minimize inherent problems (kinking or flow restriction due to Hose collapse, kinking of the Hose, or proximity to hot objects or heat sources). For additional routing recommendations see SAE J1273 and ISO 17165-2. Hose Assemblies have a finite life and if possible, should be installed in a manner that allows for ease of inspection and future replacement. Rubber Hose because of its relative short life, should not be used in residential and commercial buildings for HVAC (heating, ventilating and air conditioning) applications.

2.9 Environment: Care must be taken to insure that the Hose and Fittings are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions include whether Hose is not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals and air pollutants can cause degradation and premature failure.

2.10 Mechanical Loads: External forces can significantly reduce Hose life or cause failure. Mechanical loads which must be considered include excessive flexing, twisting, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type Fittings or adapters may be required to insure no twist is put into the Hose. Unusual applications may require special testing prior to Hose selection.

2.11 Physical Damage: Care must be taken to protect Hose from wear, snaggling, kinking, bending smaller that minimum bend radius and cutting, any of which can cause premature Hose failure. Any Hose that has been kinked or bent to a radius smaller than the minimum bend radius, and any Hose that has been cut or is cracked or is otherwise damaged should be removed and discarded.
3.11

4.3

Parker Safety Guide, Parker Publication No. 4400-B.1 (Continued)

3.4 Parts: Do not use any Parker Fitting part (including but not limited to socket, shell, nipple, or insert) except with the correct Parker mating parts, in accordance with Parker published instructions, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.5 Field Attachable/Permanent: Do not reuse any field attachable Hose Fitting that has blown or pulled off a Hose. Do not reuse a Parker permanent Hose Fitting (crimped or swaged) or any part thereof. Complete Hose Assembly may only be reused after proper inspection under section 4.0. Do not assemble Fittings to any previously used hydraulic Hose that was in service, for use in a fluid power application.

3.6 Pre-installation Inspection: Prior to installation, a careful examination of the Hose Assembly must be performed. Inspect the Hose Assembly for any damage or defects. DO NOT use any Hose Assembly that displays any signs of nonconformance.

3.7 Minimum Bend Radius: Installation of a Hose at less than the minimum listed bend radius may significantly reduce the Hose life. Particular attention must be given to preclude sharp bending at the Hose to Fitting juncture. Any bending during installation at less than the minimum bend radius must be avoided. If any Hose is kinked during installation, the Hose must be discarded.

3.8 Twist Angle or Orientation: Hose Assembly installation must be such that relative motion of machine components does not produce twisting.

3.9 Securement: In many applications, it may be necessary to restrain, protect, or guide the Hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to ensure that such restraint does not introduce additional stress areas.

3.10 Proper Connection of Ports: Proper physical installation of the Hose Assembly requires a correctly installed port connection insuring that no twist or torque is transferred to the Hose when the Fittings are being tightened or otherwise during use.

3.11 External Damage: Proper installation is not complete without insuring that tensile loads, edge loads, kinking, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See section 2.10.

3.12 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Hose maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.

3.13 Routing: The Hose Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.

3.14 Ground Fault Equipment Protection Devices (GFEPDs): WARNING! Fire and Shock Hazard. To minimize the danger of fire if the heating cable of a hot wire bundle is damaged or improperly installed, use a Ground Fault Equipment Protection Device. Electrical fault currents may be insufficient to trip a conventional circuit breaker.

For ground fault protection, the IEEE 515:1989 (www.anssi.org) standard for heating cables recommends the use of GFEPDs with a nominal 30 milli-ampere trip level for piping systems in classified areas, those areas possess a high degree of maintenance, or which may be exposed to physical abuse or corrosive atmospheres.

4.0 HOSE AND FITTING MAINTENANCE AND REPLACEMENT INSTRUCTIONS

4.1 Even with proper selection and installation, Hose life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a possible Hose failure, and experience with any Hose failures in the application or in similar applications should determine the frequency of the inspection and the replacement for the Products so that Components are replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.7.

4.2 Visual Inspection Hose/Fitting: Any of the following conditions require immediate shut down and replacement of the Hose Assembly:

- Fitting slippage on Hose;
- Damaged, cracked, cut or abraded cover (any reinforcement exposed);
- Hard, stiff, heat cracked, or charred Hose;
- Cracked, damaged, or badly corroded Fittings;
- Leaks at Fitting or in Hose;
- Kinked, crushed, flattened or twisted Hose; and
- Blistered, soft, degraded, or loose cover.

4.3 Visual Inspection All Other: The following items must be tightened, repaired, corrected or replaced as required:

- Leaking port conditions;
- Excess dirt buildup;
- Worn clamps, guards or shields; and
- System fluid level, fluid type, and any air entrapment.

4.4 Functional Test: Operate the system at maximum operating pressure and check for possible malfunctions and leaks. Personnel must avoid potential hazardous areas while testing and using the system. See section 2.2.

4.5 Replacement Intervals: Hose assemblies and elastomeric seals used on Hose Fittings and adaptors will eventually age, harden, wear and deteriorate under compression cycling and compression set. Hose Assemblies and elastomeric seals should be inspected and replaced at specific replacement intervals, based on previous service life, government or industry recommendations, or when failures could result in unacceptable downtime, damage, or injury risk. See section 1.2. Hose and Fittings may be subjected to internal mechanical and/or chemical wear from the conveying fluid and may fail without warning. The user must determine the product life under such circumstances by testing. Also see section 2.5.

4.6 Hose Inspection and Failure: Hydraulic power is accomplished by utilizing high pressure fluids to transfer energy and do work. Hose, Fittings, and Hose Assemblies all contribute to this by transmitting fluids at high pressures. Fluids under pressure can be dangerous and potentially lethal and, therefore, extreme caution must be exercised when working with fluids under pressure and handling the Hoses transporting the fluids. From time to time, Hose Assemblies will fail if they are not replaced at proper time intervals. Usually these failures are the result of some form of misapplication, abuse, wear or failure to perform proper maintenance. When Hoses fail, generally the high pressure fluids inside escape in a stream which may or may not be visible to the user. Under no circumstances should the user attempt to locate the leak by “feeling” with their hands or any other part of their body. High pressure fluids can and will penetrate the skin and cause severe tissue damage and potentially lethal effects. Even seemingly minor hydraulic fluid injection injuries must be treated immediately by a physician with knowledge of the tissue damaging properties of hydraulic fluid.

If a Hose failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the Hose Assembly. Simply shutting down the hydraulic pump may or may not eliminate the pressure in the Hose Assembly. Many times check valves, etc., are employed in a system and can cause pressure to remain in a Hose Assembly even when pumps or equipment are not operating. Tiny holes in the Hose, commonly known as pinholes, can eject small, dangerously powerful but hard to see streams of hydraulic fluid. It may take several minutes or even hours for the pressure to be relieved so that the Hose Assembly may be examined safely. Once the pressure has been reduced to zero, the Hose Assembly may be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a Hose Assembly that has failed. Consult the nearest Parker distributor or the appropriate Parker division for Hose Assembly replacement information.

Never touch or examine a failed Hose Assembly unless it is obvious that the Hose no longer contains fluid under pressure. The high pressure fluid is extremely dangerous and can cause serious and potentially fatal injury.

4.7 Elastomeric seals: Elastomeric seals will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Elastomeric seals should be inspected and replaced.

4.8 Refrigerant gases: Special care should be taken when working with refrigeration systems. Suddenly escape of refrigerant gases can cause blindness if the escaping gases contact the eye and can cause freezing or other severe injuries if it contacts any other portion of the body.

4.9 Compressed natural gas (CNG): Parker CNG Hose Assemblies should be inspected and replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.7.

5.0 HOSE STORAGE

5.1 Age Control: Hose and Hose Assemblies must be stored in a manner that facilitates age control and first-in and first-out usage based on manufacturing date of Hose and Hose Assemblies. The shelf life of rubber Hose or Hose Assemblies that have passed visual inspection and a proof test is 10 years (40 quarters) from the date of manufacture. The shelf life of thermoplastic and polytetrafluoroethylene Hose or Hose Assemblies is considered to be unlimited.

5.2 Storage: Stored Hose and Hose Assemblies must not be subjected to damage that could reduce their expected service life and must be placed in a cool, dark and dry area with the ends capped. Stored Hose and Hose Assemblies must not be exposed to temperature extremes, ozone, oils, corrosive liquids or fumes, solvents, high radiation, magnets, electromagnetic fields or reactive materials.

Parker Industrial Hose Customer Service
866 810 HOSE (4673) 800 242 HOSE (4673)
Strongsville, OH South Gate, CA
Eastern USA Western USA
www.safehose.com
e-mail: indhose@parker.com
Safety Overview

It is important to employ safe practices in the use of industrial hose due to the number of potentially dangerous applications encountered and products conveyed, and the number of people that may be involved or exposed. Strictly observe these simple practices to help avoid accidents:

- **Training:** Train all operators thoroughly.
- **Evaluation:** Evaluate the application to determine the hose assembly performance requirements.
- **Selection:** Select the most appropriate hose and couplings for the application; ensure that the couplings are compatible with the media and hose, and securely attached to the hose.
- **Service:** Regularly inspect and maintain both the hose and couplings while in service.

Industrial Hose Assemblies

Coupling Compatibility and Maximum Working Pressure Rating

NOTE: This advisory does not apply to hose, hose couplings, hose assemblies and related accessories manufactured by any other Parker Fluid Connector Division worldwide. Products from other Parker divisions must be assembled and applied in strict compliance with their respective catalog instructions, Safety Guide precautions, and other statutory, industry and regulatory requirements.

Safety issues may develop due to the misunderstanding of the relationship between the maximum working pressure ratings of industrial hose assembly components, as well as how to obtain a maximum working pressure rating for a fabricated industrial hose assembly.

It is important to recognize that the pressure rating of any hose assembly is that of the lowest rated component. The three components of an industrial hose assembly that are subject to a maximum working pressure rating are the hose, the coupling/coupling end connection, and the hose-to-coupling attachment device. Many OEM- and distributor-fabricated assemblies incorporate the three components manufactured by different companies: These components are not designed and tested together as a compatible system. Confusion may occur because the hose is often boldly marked with its maximum rated working pressure while the coupling and/or attachment device are generally unmarked or difficult to read. Therefore, the pressure rating for the assembly may incorrectly be assumed to be the pressure rating of the hose.

Parker has tested, qualified and validated a group of specific hoses and specific couplings. When fabricated according to Parker-specified procedure and criteria, Parker certifies the assembly pressure rating to be equal to that of the hose. These hose, coupling and attachment specifications are available online in the CrimpSource section of the Parker Industrial Hose Products Division website: www.safehose.com

⚠️ **WARNING!** When using components or assembly procedures not prescribed in the CrimpSource specifications, the working pressure of the hose assembly may be less than the working pressure of the hose. Couplings and attachment devices that fall into this category are inserts/stems and bands or clamps; inserts and crimped brass ferrules; screw-together reattachable couplings; internally expanded couplings; and swaged couplings. Coupling end connections may also fall into this category. For these items, contact the hose or coupling manufacturer to determine the maximum working pressure rating of a specific hose or coupling and end connection. To determine an attachment device rating, test and validate the entire assembly.

⚠️ **WARNING!** When using components or assembly procedures not prescribed in the CrimpSource specifications, it is the responsibility of the assembler to ensure the integrity and compatibility of the components and to inform the end user of the assembly's maximum working pressure rating by permanently marking the assembly with that rating.

Critical Applications

While many industrial hose applications are potentially dangerous, some are of particular concern because their danger may not be readily apparent. This is especially true for applications involving untrained or inexperienced operators.

Aircraft Fueling Hose

Use only API/NFPA qualified hose for aircraft fueling applications. Aircraft fueling hose incorporates high grade rubber compounds that dissipate static charges and will not contaminate fuel.

Note: To avoid fuel contamination do not use gasoline dispenser or farm pump hose to fuel aircraft.
Critical Applications (Continued)

Anhydrous Ammonia (NH₃) Hose

Many accidents involving anhydrous ammonia occur due to selection of an incorrect hose for the application. Anhydrous ammonia hose must be specially designed and compounded to handle the media, with a perforated cover to prevent gas build-up amidst the layers of hose. Refer to ARPM publications IP-14 “Specifications for Anhydrous Ammonia Hose” and IP-11-2 “Manual for Use, Maintenance, Testing and Inspection of Anhydrous Ammonia Hose.”

⚠️ WARNING! Use ONLY anhydrous ammonia hose for anhydrous ammonia service. Contact with anhydrous ammonia in its liquid or gaseous (vapor) phase will burn skin, eyes and lungs, causing serious bodily injury or death.

- Do not use anhydrous ammonia hose for LPG service. It may fail suddenly and quickly. Anhydrous ammonia hose and LPG hose are frequently used in proximity and may be accidentally switched.
- Use only Parker permanent crimp couplings when fabricating anhydrous ammonia hose assemblies. Refer to CrimpSource at www.safehose.com.
- Do not use with couplings containing o-rings, which may dry out, crack and fail over time. Do not use with male swivel couplings or other couplings containing hidden o-rings.

Anhydrous ammonia hose is designed to allow a limited amount of permeation of gas through the wall of the hose when in service, and staining of the hose cover in the pin-pricked areas does not necessarily indicate leakage for a hose in service. However, a visible gas mist escaping through the hose is an indication of leakage. To verify the integrity of a hose in service, perform a hydrostatic test on the assembly; immediately remove from service any that fail the test.

NOTE: For non-agricultural or refrigeration applications, contact Parker.

Chemical Hose

A chemical hose system failure could cause the release of poisonous, corrosive, or flammable material resulting in property damage, serious bodily injury or death. All reputable manufacturers of chemical hose recommend specific hose constructions to handle various chemicals. Refer to the chemical guides in this catalog, or contact Parker for technical assistance before using or recommending a hose product. Refer to ARPM publication IP-11-7 “Manual for Maintenance, Testing, and Inspection of Chemical Hose.”

Handling

- Use care to prevent mishandling. Crushing or kinking of the hose can cause severe damage to the reinforcement.
- Use proper hose suspension equipment when lifting or dragging a hose to ensure that the recommended curvature is not exceeded. Avoid sharp bends at the end fittings and at manifold connections.

Operation

- Use safety precautions such as wearing eye or face protection, rubber gloves, boots, and other types of protective clothing.
- Monitor pressures and temperatures to ensure that the hose is not exposed to conditions above specified limits.
- Do not allow chemicals to contact the exterior of the hose or allow hose to lie in a pool of chemicals since the hose cover may not have the same level of corrosion resistance as the tube. Corrosive materials that come into contact with the reinforcing material will cause reduced service life and premature hose failure.

Temperature

Do not use chemical hose at pressures or temperatures exceeding those as specified for the product. Many chemical resistance guides are based on temperatures of 70°F (21°C). Elevated temperatures can change the chemical resistance ratings. Many chemicals will become more aggressive as temperatures increase, reducing the ability of hose compounds to withstand them. Contact Parker for chemical compatibility data at elevated temperatures. If no data exists, end users are required to perform compatibility testing at the desired temperature.

Couplings

- At any operating temperature, couplings attached with bands or clamps may reduce the working pressure of the hose assembly to less than the maximum rated working pressure of the hose. Refer to the NAHAD Industrial Hose Assembly Guidelines.
- At operating temperatures of 125°F and above, install only permanently attached couplings.
- Do not use internally expanded couplings with chemical hoses incorporating thermoplastic tubes. Refer to chemical hoses that incorporate a MXLPE tube.
Critical Applications (Continued)

Gasoline Dispenser Hose

 Millions of consumers operate gasoline pumps every day, increasing the concern for the safe use of dispensing equipment, including the hose. Since gasoline dispenser hoses are subject to frequent abuse, hose selection must include consideration of the rigors of the application. For maximum service life, select only the highest quality, most thoroughly tested UL listed hose and establish a regular inspection and maintenance program. Refer to ARPM publication IP-11-8 "Manual for Maintenance, Testing, and Inspection of Petroleum Service Station Gasoline Dispensing Hose and Hose Assemblies.”

Note: To avoid fuel contamination do not use gasoline dispenser or farm pump hose to fuel aircraft.

LP Gas (Propane) Hose

 Many accidents involving LP Gas occur due to selection of an incorrect hose for the application. LP Gas hose must be specially designed and compounded to handle the media, with a perforated cover to prevent gas build-up amidst the layers of the hose.

⚠️ WARNING! Use ONLY LP Gas hose for LP Gas service. LP Gas possesses volatile characteristics that may produce fire or explosions causing property damage, serious bodily injury or death.

- Do not use LP Gas hose for anhydrous ammonia service. It may fail suddenly and quickly. Anhydrous ammonia hose and LPG hose are frequently used in proximity and may be accidentally switched.
- Use only Parker permanent crimp couplings when fabricating LP Gas hose assemblies. Refer to CrimpSource at www.safehose.com. Couplings attached with bands or clamps may reduce the working pressure of the hose assembly to less than the maximum rated working pressure of the hose. Refer to the NAHAD Industrial Hose Assembly Guidelines.
- Do not use with couplings containing o-rings, which may dry out, crack and fail over time. Do not use with male swivel couplings or other couplings containing hidden o-rings.
- Do not use with screw-together reattachable couplings (except hose Series 7233/7243).

LP Gas hose is designed to allow a limited amount of permeation of LP Gas through the wall of the hose when in service. The permeation is apparent when the hose is moist or in water, and bubbles may be perceived as leakage. However, a legitimate propane leak creates a frosting or icing on the surface of the hose or coupling. To verify the integrity of a hose in service, perform a hydrostatic test on the assembly; immediately remove from service any hose that fails the test. In the transfer of LP Gas, the allowable permeation rate is controlled by the Underwriters Laboratories Standard UL21 for LP Gas Hose.

Department of Transportation (DOT) and LP Gas Hose

LP Gas hose assemblies installed on on-road vehicles must meet DOT requirements. Parker factory assemblies 3/4” ID and larger undergo pressure testing as standard procedure (smaller sizes are tested per customer request), one of the fittings is etched with a unique DOT certification number, and a document incorporating the identical certification number accompanies each assembly. Metal DOT identification bands are also available/attached for an additional charge at customer request. Contact Parker.

NOTE: When using LP Gas hose in a mobile application such as delivery or service vehicles, the inspection procedures detailed in DOT regulation 49CFR 180.416 must be strictly followed.

Natural Gas and LP Gas Hose

The molecules of natural gas are small, enhancing their ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases, and natural gas accumulates with potentially dangerous consequences. Series 7132, 7132XTC, 7170, 7231, 7232, 7233 and 7243 LP Gas hoses may be used for natural gas service to a 350 psi maximum, but ONLY under ALL of the following conditions:

- Use only in a well-ventilated environment: Outdoors, or indoors with significant continuous air movement.
- Do not use LP Gas hose to replace fixed/rigid pipe where that material is more appropriate due to reduced permeation, overall strength and durability. Use rigid pipe, non-permeable tubing or hose with barrier constructions to convey natural gas whenever possible.

Compressed Natural Gas (CNG) and LP Gas Hose

- Do not use LP Gas hose in any CNG application, including fuel dispensing, on-board vehicle fuel lines, and fuel transfer.
Critical Applications (Continued)

Petroleum Transfer Hose
- Do not use for oil or fuel transfer service in or on open water. Hose damage or failure may result in spillage and environmental damage. Use hose specifically designed for this application.
- Do not immerse in fuel. The hose cover compound may not be of sufficient grade to resist attack by the fuel. Use hose specifically designed for this application.

Steam Hose
Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve and maintain a steam phase. If steam escapes, dangerous quantities of heat may be released very suddenly. Refer to ARPM publication IP-11-1 “Guide for Use, Testing and Inspection of Steam Hose.”

⚠️ **WARNING!** Use ONLY steam hose for steam service. Hot water, low pressure steam and high pressure steam may escape explosively and will scald skin, eyes and lungs, which may lead to severe bodily injury or death.
- Many steam systems incorporate detergents or rust inhibitors which may attack steam hose. Prior to using a steam hose with detergents or rust inhibitors, refer to the chemical guides in this catalog, or contact Parker.
- Parker recommends using permanent crimp couplings when fabricating steam assemblies. Refer to CrimpSource at www.safehose.com. Couplings attached with bands or clamps may reduce the working pressure of the hose assembly to less than the maximum rated working pressure of the hose. Refer to the NAHAD Industrial Hose Assembly Guidelines.
- Drain steam hose after each use to reduce the possibility of hose popcorning while in service.

The chart at the right represents the three forms of water when subjected to various combinations of heat and pressure. The red line represents the point at which hot water becomes saturated steam. The area below the red line is hot water; the area above the red line is superheated steam.

Welding Hose
Many accidents involving welding hose occur due to selection of an incorrect hose for the application. Welding hose must be specially designed and compounded to handle the media, with rubber compounds able to handle fuel gas and oxygen. Due to the extreme volatility of gases, the varying compatibility of gases with the various grades of hose, and the rough environment of many welding applications, it is crucial to select the correct welding hose. Refer to ARPM publications IP-7, “Specifications for Rubber Welding Hose” and IP-11-5, “Guide for Use, Maintenance and Inspection of Welding Hose.” Also refer to the Compressed Gas Association publications E-1, “Standard for Rubber Welding Hose and Hose Connections for Gas Welding, Cutting and Allied Processes” and Safety Bulletin SB-11 “Use of Rubber Welding Hose.”

⚠️ **WARNING!** Welding gases possess volatile characteristics that may produce fire or explosions causing property damage, serious bodily injury or death. Use Grades R and RM ONLY with acetylene fuel gas; do not use with any other fuel gases.
- Replace all assemblies that show signs of abrading, abuse, age, damage or fatigue. Do not attempt to re-couple, repair or splice hose assemblies.
- Fabricate hose assemblies using only crimped-on ferrules at least one inch long to ensure coverage and support of the coupling stem inside the hose.
- Couplings attached with bands or clamps may reduce the working pressure of the hose assembly to less than the maximum rated working pressure of the hose. Refer to the NAHAD Industrial Hose Assembly Guidelines.
Critical Applications (Continued)

PVC / Thermoplastic Hose and Tubing

Thermoplastic polymer compounds are designed to resist deterioration when exposed to a wide range of commercial chemicals and environmental conditions. The resistance to attack is based on many factors, including temperature, pressure, chemical concentration, exposure to ultraviolet light, velocity of the media and duration of exposure/service (intermittent or constant). The user is solely responsible for making the final selection of the hose and tubing, and meeting all endurance, maintenance, performance, safety and warning requirements of the application.

NOTE: The rated maximum working pressures listed in this catalog for thermoplastic hose and tubing are based upon a pressure test temperature of 68°F (20°C) unless stated otherwise.

⚠️ **WARNING!** As temperature increases or decreases, burst pressure, safe working pressure, coupling retention properties, and other safety characteristics of the hose or tubing can significantly decrease. Failure to consider how temperature and other conditions affect hose and tubing performance may cause property damage, serious bodily injury or death.

Effects of Elevated Temperatures on PVC / Thermoplastic Hose and Tubing

Thermoplastic hose and tubing achieve their optimum physical properties at room temperature, 68°F (20°C). As thermoplastic materials are exposed to increased ambient temperatures, they soften and their physical properties change. For hose and tubing, heat sharply reduces the available working pressure and coupling retention. The charts below illustrate this effect. In all cases, test the product in a controlled, secure and safe environment, and consider all operating conditions prior to use.

![Example from the Fahrenheit Chart](image1)

Example from the Fahrenheit Chart

If Working Pressure at 68°F is 200 PSI, then the WP at 110°F is 200 x 50%, or 100 PSI.

For further information, refer to the Parker Safety Guide No. 4400-B.1 (pages 395-397) and the Parker User Responsibility Statement on the inside front cover of this catalog.

![Example from the Celsius Chart](image2)

Example from the Celsius Chart

If Working Pressure at 20°C is 14 bar, then the WP at 50°C is 14 x 40%, or 5.6 bar.
California Proposition 65

The Safe Drinking Water and Toxic Enforcement Act (Proposition 65) was adopted by the State of California in November, 1986. Proposition 65 was intended to protect citizens and the sources of drinking water from chemicals known to cause cancer, birth defects or other reproductive harm, and to inform citizens about exposure to such chemicals. It provides restrictions for exposure to, and use of certain chemicals which have been determined by the State of California to cause cancer or reproductive toxicity. Proposition 65 requires businesses operating in and marketing products into California to apply warnings to any product containing specifically listed chemicals. An exception applies to sellers who have test data verifying the product is below Proposition 65 minimum exposure levels.

Exposure as defined in Proposition 65 can be from direct contact such as dermal transfer, ingestion, or inhalation; from indirect contact such as ingestion of drinking water contained or transferred by a finished good; or ingestion of a residual substance transferred to the consumer after handling a finished good.

As of January 2010, the allowable limits for lead were revoked, so that any trace amounts of lead required compliance with the statute. This affected all products typically containing brass or steel, including hoses containing wire and Parker-fabricated hose assemblies incorporating fittings. For example, a bulk hose which meets government or industry food, beverage or sanitary requirements would typically meet the exposure limits set forth in Proposition 65, and not require a warning/notification. However, when an assembly that incorporates that hose is fabricated using a brass or steel fitting, the finished good assembly would require the appropriate warning/notification.

The Parker Hannifin Industrial Hose Products Division has instituted a division-wide policy to label all products manufactured in, shipped to, or with the possibility of being shipped to California with the required Proposition 65 warning language. There are hundreds of chemicals on the Proposition 65 list and most Parker products contain one or more of the listed chemicals. For example, rubber, brass, steel and most machined metals contain minuscule amounts of the listed chemicals. Consequently, Parker is placing the warning on products to ensure compliance with the California law.

Industry Publications

Listed below are the titles of publications issued by the Association for Rubber Products Manufacturers (ARPM). Information concerning the latest edition, prices, ordering procedure, etc., may be obtained by contacting them as shown below:

Association for Rubber Products Manufacturers (ARPM)
7231 Shadeland Station Way, Suite 285
Indianapolis, IN 46256

Phone: 317-863-4072
Fax: 317-913-2445
Web: www.arpminc.com

<table>
<thead>
<tr>
<th>Publication Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-2</td>
<td>Hose Handbook</td>
</tr>
<tr>
<td>IP-7</td>
<td>Specifications for Rubber Welding Hose</td>
</tr>
<tr>
<td>IP-8</td>
<td>Specifications for Rubber Hose for Oil Suction and Discharge</td>
</tr>
<tr>
<td>IP-14</td>
<td>Specifications for Anhydrous Ammonia Hose</td>
</tr>
<tr>
<td>IP-11</td>
<td>Complete Set of Hose Technical Bulletins</td>
</tr>
</tbody>
</table>
Basic Hose Constructions

Construction Elements
A hose is generally composed of three elements, each with an important role in the overall performance of that hose. The three elements are:

The Tube must be compatible with and able to contain the media being conveyed. Many different materials are used for tube construction, depending upon the media the hose is designed to transmit.

The Reinforcement is the strength member of the hose. It enables the hose to withstand internal and external pressure and abuse. The reinforcement may be applied by several methods, and consists of synthetic yarns, wire or a combination of these. If suction or vacuum capability is a requirement, a helix wire may be part of the reinforcement.

The Cover protects the reinforcement from abuse or damage. The cover is usually a rubber compound selected for its resistance to the environment, although, in some cases (Series 7243) the reinforcement will also act as the cover. Typical considerations in selecting a cover stock are the need to resist abrasion, ozone, weather and sunlight, chemical or oil spillage, etc.

Construction Methods
Several methods are used to manufacture Parker hose. Application factors such as size and pressure requirements determine the selection of any particular hose style. The following is a description of the various construction methods employed by Parker.

Non-Mandrel
Non-mandrel hose is constructed by passing long lengths of extruded tube material through a machine which adds the reinforcement in braided or spiraled layers. In this method, the hose is not built on a mandrel, therefore lengths are not restricted to the lengths of the mandrels.

Typical Size Range: 1-1/2” ID and smaller

Typical Uses: Air, water or general purpose service where operating conditions are not severe

Advantages: Economy and long lengths

Disadvantages: Requires wider ID and OD tolerance range than mandrel made hose, limited pressure capabilities

Rigid Mandrel
Hose produced by this method is supported on a rigid metal mandrel and is handled horizontally during production. While a rigid mandrel limits the hose length, it ensures good control of the inside diameter. It also offers sufficient support to the tube that either wire or textile reinforcement may be applied at high tensions, which is necessary in high pressure constructions. After the cover is applied, the hose may be wrapped with nylon tape for curing, giving the familiar "wrapped" finish to the cover.

Typical Size Range: 3/4” ID and larger

Typical Uses: Air, chemical and petroleum transfer, LPG, steam, water

Advantages: Close tolerances on inside diameter, high pressure ratings, good length stability

Disadvantages: Higher cost than non-mandrel; lengths restricted to length of mandrels
Basic Hose Constructions (Continued)

Flexible Mandrel
The flexible mandrel method combines the long-length advantage of non-mandrel hose with the close inside diameter tolerances and high pressure ratings of rigid mandrel hose. This is achieved by building the hose on a long length mandrel made of flexible plastic or rubber.

Typical Size Range: 1-1/2" ID and smaller

Typical Uses: High pressure, air, water, LPG

Advantages: Long lengths, close tolerances on I.D., higher pressure ratings than non-mandrel produced hose

Disadvantages: Higher cost than non-mandrel hose; not available in ID sizes as large as rigid mandrel hose

Wrapped Ply – Machine Built
The wrapped ply construction is the oldest method of making hose, applying all hose components (tube, reinforcement and cover) in spiral strips on a rigid mandrel. After a tube is in place on the mandrel, layers or plies of bias cut fabric reinforcement are wrapped around the tube. The cover is applied and the hose is wrapped in nylon tape prior to curing. This process is capable of producing a hose for suction service when a helix wire(s) is incorporated.

Size Range: 1/2” through 30” ID

Typical Uses: Air; suction and discharge service for chemicals, dry materials, oil and water, conduit

Advantages: Good inside diameter tolerances, many special constructions available without large minimum production runs, special ends available, wide size range

Disadvantages: Higher cost compared to non-mandrel and flex mandrel; pressure and length limitations

Wrapped Ply – Hand Built
Wrapped ply hose may be hand built when the diameter is too large for the building machine or where special built-in ends are desired. The plies are laid on by an operator rather than an automated machine process, allowing hand-forming of built-in ends.

Size Range: 1/2” through 60” ID

Typical Uses: Oil suction and discharge, sand suction, acid suction and discharge

Advantages: Special ends can be built into the hose; wide size range; special constructions available in small quantities

Disadvantages: Relatively expensive due to high labor content
Age Control of Hose (Shelf Life)

The Parker warranty takes precedence over guidelines established by other industry organizations regarding the recommended shelf life of industrial hose. To achieve maximum shelf life, employ proper storage and handling practices and techniques, such as:

- Storage in the original shipping container such as a box, coil, or reel. Hose stored on a reel or in a coil should have its plastic wrapping kept intact.
- Storage in temperatures of 100°F (38°C) or less.
- Avoidance of ozone (electrical discharges or fields), water, extreme humidity, corrosive chemicals and ultraviolet radiation (direct sunlight).
- Use on a first-in, first-out (FIFO) basis determined by the manufacturing date on the hose.

For further information pertaining to age control of hose, contact Parker or refer to the current ARPM Hose Handbook, IP-2.

Electrical Properties of Rubber Hose

Electrical Conductivity

Industrial hoses generally fall into three categories: conductive, nonconductive, or somewhere in-between. Because of its unique properties, it is possible for rubber to be nonconductive at low voltage and conductive at high voltage. When using a hose in an application that has electrical resistance requirements (low electrical resistance for conductive applications or high electrical resistance for nonconductive applications), always select a hose that is specifically designed to meet the specific need. Since conductivity or nonconductivity is not a consideration for many applications, electrical resistance ratings do not exist for many hoses.

Conductive Hose

Static electricity is generated by the flow of material (even some liquids) through a hose. As the material flows, molecules collide and generate friction, which creates minute amounts of electrical charge (excess electrons). The charge accumulates potential energy at the delivery end of the hose (coupling/nozzle). The amount of charge increases with material volume and linear velocity, coarseness of the material, and length of the hose. If not properly grounded, the accumulated charge (potential energy) will seek its own ground. The charge will be attracted to external materials in proximity (such as a steel storage container); if not properly grounded, the electrons may arc (jump) to the external material, igniting volatile materials in the hose, or in proximity to the hose.

Electrically conductive wires and conductive rubber components are used in hose to prevent static electricity build-up and discharge as a spark. Electrical engineers differ in opinion on the effects of static electricity and the means of dissipating it. In handling gasoline and other petroleum-based liquids, recognized national associations and companies have conflicting opinions on the need for conductive hoses. Until a consensus is reached among all associations, laboratories and users, and a standard practice is established, it is essential that the user determine the need for static bonded hose based on (a) the intended use of the hose, (b) instructions from the company’s safety division, (c) the insurer, and (d) the laws of the localities and states in which the hose will be used.

Some types of hose include a helical or static wire(s). This wire can be used for electrical continuity provided that proper contact is made and maintained between it and the hose couplings.

Nonconductive Hose

Nonconductive hose constructions are those that resist the flow of electrical current. In some specific applications, especially around high voltage electrical lines, it is imperative for safety that the hose be nonconductive. Unless the hose is designed particularly to be nonconductive and is so branded, do not conclude that it is nonconductive. Many black rubber compounds are inherently and inadvertently conductive. Nonconductive hose is usually made to a qualifying standard that requires it to be tested to verify the desired electrical properties. The hose is frequently (but not necessarily) non-black in color and clearly branded to indicate it is designed for nonconductive applications.

NOTE 1: Parker industrial hose generally uses the non-conductivity standard originally developed by Alcoa Aluminum: A minimum resistance of one megohm per inch at 1,000 volts D.C.

NOTE 2: SAE has a separate standard for nonconductivity for high pressure hydraulic applications. Part of the standard requires that nonconductive hose feature an orange cover.

NOTE 3: Nonconductive hoses contain little/no conductive rubber compounds, static wires, helical wires, or wire reinforcement. Therefore, a nonconductive hose would not be recommended for an application requiring an “anti-static/static dissipating/conductive” hose.

⚠️ WARNING! Unless a hose is described as, or specifically and clearly branded to be conducting or nonconducting, assume that the electrical properties are uncontrolled.
Force to Bend / Minimum Bend Radius

The amount of force required to bend a hose and the minimum bend radius are important factors in hose design and selection. The minimum bend radius is defined as the radius to which the hose can be bent in service without damaging or appreciably shortening the life of the product, and is measured to the inside of the curvature of the bend. The bend radius for a given application must be equal to or greater than the rated minimum bend radius. Bending the hose to a smaller bend radius than minimum may kink the hose and result in premature failure.

Perhaps more important in determining flexibility, the force-to-bend is defined as the amount of force required to induce bending around a specified radius. The less force that is required, the easier the product is to maneuver in the field. Different hose constructions may require significantly different forces to attain the same minimum bend radius. Generally, the preferred hose is the more flexible hose, provided all other properties are essentially equivalent.

Oil and Fuel Resistance

Rubber compounds are available in different formulations, blends and grades. Compounds are selected by hose design engineers based on the intended application of the hose. For instance, a hose recommended for multipurpose applications that may include hydraulic or lubrication oil service generally contains a lower grade of tube compound. Conversely, a hose recommended for a more rigorous application, such as highly refined fuel service, contains a higher grade of compound, often within the same compound family.

Rubber hose is used to convey petroleum products both in the crude and refined stages. The aromatic content of refined gasoline is often adjusted to control the octane rating. The presence of aromatic hydrocarbons in this fuel generally has a greater effect on rubber components than do aliphatic hydrocarbons. Aromatic materials in contact with rubber tend to soften it and reduce its physical properties. For long-lasting service, the purchaser of fuel hose should inform the hose manufacturer of the aromatic content of the fuel to be handled so that the proper tube compound can be recommended for the specific application.

The effect of oil on rubber depends on a number of factors that include the type of rubber compound, the composition of the oil, the temperature and duration of exposure. Rubber compounds can be classified to their degree of oil resistance based on their physical properties after exposure to a standard test fluid. In this ARPM classification, the rubber samples are immersed in IRM 903 oil at 212°F (100°C) for seventy hours. (See ASTM Method D-471 for a detailed description of the oil and the testing procedure.) As a guide to users of hose in contact with oil, the oil resistance classes and a corresponding description are listed on the next page.

General Formula for Minimum Hose Length (given hose bend radius and degree of bend required)

\[
\text{Angle of Bend} \times \frac{2 \pi r}{360°} = \text{Minimum length of hose to make bend.}
\]

\(r \) = Given bend radius of hose.

Example: To make a 90° bend with 2" I.D. hose.

Given \(r \) = 4.5 inches.

\[
\frac{90°}{360°} \times 2 \times 3.14 \times 4.5
\]

\[.25 \times 2 \times 3.14 \times 4.5 = 7" \] (minimum length of hose to make bend without damage to hose)

The bend radius for a given application must be equal to or greater than the rated minimum bend radius. Bending the hose to a smaller bend radius than minimum may kink the hose and result in premature failure.

General Formula for Minimum Hose Length (allowing relief from couplings)

Overall Length (OAL) = \((2 \times \text{Length of Coupling}) + (2 \times \text{Hose OD}) + (\text{Angle}/360) \times 2 \pi r\)
Physical Properties After Exposure to Oil

<table>
<thead>
<tr>
<th>Class</th>
<th>Volume Change Maximum</th>
<th>Tensile Strength Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A (High Oil Resistance)</td>
<td>+25%</td>
<td>80%</td>
</tr>
<tr>
<td>Class B (Medium/High Oil Resistance)</td>
<td>+65%</td>
<td>50%</td>
</tr>
<tr>
<td>Class C (Medium Oil Resistance)</td>
<td>+100%</td>
<td>40%</td>
</tr>
</tbody>
</table>

The above ARPM guideline does not imply compatibility with all oil based fluids. There are many grades of rubber compounds that meet ARPM Class A oil resistance requirements. Some compound grades will be fine for multipurpose applications, while higher grades would be required for more rigorous applications.

Oil resistant hoses for multipurpose service tend to be more economical than hoses specifically designed and recommended for highly refined fuel service. These multipurpose hoses, even if they feature an ARPM Class A tube, are not necessarily recommended for use with highly refined fuels. Furthermore, many chemical resistance charts represent data developed from testing of a typical grade of compound used for that family of fluids. For example, “nitrile” may show compatibility with gasoline, but the nitrile that was tested is likely the nitrile used in gasoline dispenser hose, as opposed to the nitrile commonly used in multipurpose hose.

When selecting a hose for highly refined fuels such as aviation fuel, biodiesel, diesel, ethanol, gasoline or kerosene, be guided by the hose manufacturer’s recommendation to use a hose designed and manufactured for that specific application and/or fluid. Contact Parker for further information.

Suction and Vacuum

Hose is constructed with high adhesion between the tube and the carcass to prevent tube separation. Most hose is used for pressure service; however, some applications require the hose to resist collapse in suction and vacuum service. Such hose is subjected to crushing forces because the atmospheric pressure outside the hose is greater than the internal pressure. The hose can collapse and restrict the flow unless the hose is constructed to resist these pressure differentials. The most common method of preventing hose collapse is to build a helical member(s) (wire or thermoplastic) into the hose body. The size and spacing of the helix depends on the size of the hose and the pressure differential. In applications approaching a perfect vacuum, most of the plies of reinforcement are applied over the helix.

Suction hose must be specifically designed for the service for which it is used. Each element—tube, reinforcement, size, spacing, and location of the helix—must be carefully considered. While suction hose is generally used to convey liquids, vacuum hose carries air under a partial vacuum. Vacuum hose is reinforced to resist collapse and maintain its shape under rough handling and/or mechanical abuse. It does not require the heavy construction of suction hose because the dry materials generally conveyed are much lighter in weight than liquids and the vacuum is usually less than for normal suction service.
Coupling Thread Compatibility

Industrial hose couplings have threads which are usually one of the various “pipe” threads. All pipe threads are commonly referred to by the generic name of Iron Pipe Thread or IPT. There are several different types of IPT threads and you must know specifically what they are to ensure compatibility with mating threads.

IPT Thread Compatibility Chart

<table>
<thead>
<tr>
<th>Description</th>
<th>Seal</th>
<th>Thread (Female)</th>
<th>Compatible Threads (Male)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Standard Tapered Pipe Thread</td>
<td>Thread Seal (with Sealing Compound)</td>
<td>NPT</td>
<td>NPT</td>
</tr>
<tr>
<td>American Standard Tapered Dryseal Pipe Thread</td>
<td>Thread Seal (Dryseal)*</td>
<td>NPTF</td>
<td>NPTF</td>
</tr>
<tr>
<td>American Standard Straight Pipe Thread for mechanical joints (includes 2 female types, depending on sealing method, and one male type compatible with both females)</td>
<td>Washer or Mechanical Ground Joint</td>
<td>NPSM</td>
<td>NPSM</td>
</tr>
<tr>
<td>American Standard Straight Pipe Threads for hose couplings and nipples</td>
<td>Washer</td>
<td>NPSH</td>
<td>NPSH</td>
</tr>
</tbody>
</table>

*When NPTF Threads are used more than once, they require sealing compound after the first use.

In addition, there are various other thread types that may be found on industrial hose couplings. These types are generally not compatible with any other thread types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHT</td>
<td>Garden Hose Thread</td>
<td>Washer seal</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute Thread</td>
<td>Thread seal</td>
</tr>
<tr>
<td>JIC (37˚)</td>
<td>Joint Industry Council</td>
<td>Mechanical seal</td>
</tr>
<tr>
<td>SAE (45˚)</td>
<td>Society of Automotive Engineers</td>
<td>Mechanical seal</td>
</tr>
<tr>
<td>NF</td>
<td>Welding Hose Threads-Left Hand and Right Hand</td>
<td>Mechanical seal</td>
</tr>
<tr>
<td>CHT</td>
<td>Chemical Hose Thread (for booster hoses)</td>
<td>Gasket seal</td>
</tr>
</tbody>
</table>
Dimensions of 150-Lb. Steel Flanges ASA

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in.)</th>
<th>Diameter of Bolt Circle (in.)</th>
<th>Number of Bolts</th>
<th>Diameter of Bolts (in.)</th>
<th>Diameter of Bolt Holes (in.)</th>
<th>Flange O.D. (in.)</th>
<th>*Weight (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-1/8</td>
<td>4</td>
<td>1/8</td>
<td>5/8</td>
<td>4-1/2</td>
<td>2</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3-7/8</td>
<td>4</td>
<td>1/2</td>
<td>5/8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4-3/4</td>
<td>4</td>
<td>5/8</td>
<td>3/4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2-1/2</td>
<td>5-1/2</td>
<td>4</td>
<td>5/8</td>
<td>3/4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5/8</td>
<td>3/4</td>
<td>7-1/2</td>
<td>10</td>
</tr>
<tr>
<td>3-1/2</td>
<td>7</td>
<td>8</td>
<td>5/8</td>
<td>3/4</td>
<td>8-1/2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>7-1/2</td>
<td>8</td>
<td>5/8</td>
<td>3/4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>8-1/2</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>9-1/2</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>11</td>
<td>19-1/2</td>
</tr>
<tr>
<td>8</td>
<td>11-3/4</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>13-1/2</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>14-1/4</td>
<td>12</td>
<td>7/8</td>
<td>1</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>12</td>
<td>7/8</td>
<td>1</td>
<td>19</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>18-3/4</td>
<td>12</td>
<td>1</td>
<td>1-1/8</td>
<td>21</td>
<td>85</td>
</tr>
<tr>
<td>16</td>
<td>21-1/4</td>
<td>16</td>
<td>1</td>
<td>1-1/8</td>
<td>23-1/2</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>22-3/4</td>
<td>16</td>
<td>1-1/8</td>
<td>1-1/4</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>20</td>
<td>1-1/8</td>
<td>1-1/4</td>
<td>27-1/2</td>
<td>155</td>
</tr>
<tr>
<td>24</td>
<td>29-1/2</td>
<td>20</td>
<td>1-1/4</td>
<td>1-3/8</td>
<td>32</td>
<td>210</td>
</tr>
</tbody>
</table>

*Weights shown for sizes up through 24" are for threaded flanges.

Note: 125-Lb. flange dimensions are same as dimensions of 150-Lb. flanges except thickness and weight.

Dimensions of 300-Lb. Steel Flanges ASA

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in.)</th>
<th>Diameter of Bolt Circle (in.)</th>
<th>Number of Bolts</th>
<th>Diameter of Bolts (in.)</th>
<th>Diameter of Bolt Holes (in.)</th>
<th>Flange O.D. (in.)</th>
<th>*Weight (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-1/2</td>
<td>4</td>
<td>5/8</td>
<td>3/4</td>
<td>4-7/8</td>
<td>3</td>
</tr>
<tr>
<td>1-1/2</td>
<td>4-1/2</td>
<td>4</td>
<td>3/4</td>
<td>7/8</td>
<td>6-1/8</td>
<td>6-1/2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5/8</td>
<td>3/4</td>
<td>6-1/2</td>
<td>7</td>
</tr>
<tr>
<td>2-1/2</td>
<td>5-7/8</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>7-1/2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>6-5/8</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>8-1/4</td>
<td>14</td>
</tr>
<tr>
<td>3-1/2</td>
<td>7-1/4</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>7-7/8</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>9-1/4</td>
<td>8</td>
<td>3/4</td>
<td>7/8</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>10-5/8</td>
<td>12</td>
<td>3/4</td>
<td>7/8</td>
<td>12-1/2</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>12</td>
<td>7/8</td>
<td>1</td>
<td>15</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>15-1/4</td>
<td>16</td>
<td>1</td>
<td>1-1/8</td>
<td>17-1/2</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>17-3/4</td>
<td>16</td>
<td>1-1/8</td>
<td>1-1/4</td>
<td>20-1/2</td>
<td>110</td>
</tr>
<tr>
<td>14</td>
<td>20-1/4</td>
<td>20</td>
<td>1-1/8</td>
<td>1-1/4</td>
<td>23</td>
<td>164</td>
</tr>
<tr>
<td>16</td>
<td>22-1/2</td>
<td>20</td>
<td>1-1/4</td>
<td>1-3/8</td>
<td>25-1/2</td>
<td>220</td>
</tr>
<tr>
<td>18</td>
<td>24-3/4</td>
<td>24</td>
<td>1-1/4</td>
<td>1-3/8</td>
<td>28</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>24</td>
<td>1-1/4</td>
<td>1-3/8</td>
<td>30-1/2</td>
<td>325</td>
</tr>
<tr>
<td>24</td>
<td>32</td>
<td>24</td>
<td>1-1/2</td>
<td>1-3/8</td>
<td>36</td>
<td>490</td>
</tr>
</tbody>
</table>

*Weights shown for sizes up through 24" are for threaded flanges.